Publikace UTB
Repozitář publikační činnosti UTB

Influence of thermal ageing process on the crack propagation of rubber used for tire application

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Influence of thermal ageing process on the crack propagation of rubber used for tire application en
dc.contributor.author Stoček, Radek
dc.contributor.author Kratina, Ondřej
dc.contributor.author Ghosh, Pranab
dc.contributor.author Maláč, Jiří
dc.contributor.author Mukhopadhyay, Rabindra
dc.relation.ispartof Deformation and Fracture Behaviour of Polymer Materials
dc.identifier.issn 0933-033X Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2017
utb.relation.volume 247
dc.citation.spage 351
dc.citation.epage 364
dc.type conferenceObject
dc.language.iso en
dc.publisher Springer-Verlag Berlin
dc.identifier.doi 10.1007/978-3-319-41879-7_24
dc.relation.uri https://link.springer.com/chapter/10.1007/978-3-319-41879-7_24
dc.description.abstract The present work studies the influence of thermal aging behaviour of rubber compounds based on natural rubber (NR), styrene butadiene rubber (SBR) and their blend NR/SBR 60/40 on dynamic-mechanical and fatigue crack growth properties. The thermal ageing at the temperatures 70 and 110 degrees C has been applied, which closely simulates the real service conditions of tires. Dynamic mechanical analysis (DMA) and fatigue crack growth (FCG) properties were characterised for the aged samples. The loss compliance J" has been determined as a parameter, which effectively is detecting the embrittlement or softening/hardening behaviour of the aged rubber. Finally, the FCG studies revealed that increase in aging temperature has deleterious effect on crack growth resistance as was reflected in all the aged materials. en
utb.faculty University Institute
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1008005
utb.identifier.rivid RIV/70883521:28610/17:63517259!RIV18-MSM-28610___
utb.identifier.obdid 43877249
utb.identifier.scopus 2-s2.0-85024485408
utb.identifier.wok 000430004400025
utb.source d-wok
dc.date.accessioned 2018-07-27T08:47:39Z
dc.date.available 2018-07-27T08:47:39Z
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Stoček, Radek
utb.contributor.internalauthor Kratina, Ondřej
utb.contributor.internalauthor Maláč, Jiří
utb.fulltext.affiliation R. Stoček, O. Kratina, P. Ghosh, J. Maláč and R. Mukhopadhyay R. Stoček PRL Polymer Research Lab s.r.o, Zlín, Czech Republic R. Stoček (✉) · O. Kratina · J. Maláč Centre of Polymer Systems, Tomas Bata University in Zlín, Zlín, Czech Republic O. Kratina · J. Maláč Faculty of Technology, Department of Polymer Engineering, Tomas Bata University in Zlín, Zlín, Czech Republic P. Ghosh · R. Mukhopadhyay Hari Shankar Singhania Elastomer & Tyre Research Institute, Kankroli, Rajasthan, India
utb.fulltext.dates -
utb.fulltext.references 1. Heinrich, G., Klüppel, M., Vilgis, T.A.: Reinforcement of elastomers. Curr. Opin. Solid State Mater. Sci. 6, 195–203 (2002) 2. Klüppel, M.: The role of disorder in filler reinforcement of elastomers on various length scales. In: Filler-Reinforced Elastomers/Scanning Force Microscopy. Advances in Polymer Science, Vol. 164, pp. 1–86 (2003) 3. Dannenberg, E.M.: The effect of surface chemical interactions on the properties of filler reinforced rubbers. Rubber Chem. Technol. 44, 440–478 (1975) 4. Klüppel, M., Schramm, J.: An advanced micro-mechanical model of hyperelasticity and stress softening of reinforced rubbers. In: Dorfmann, A., Muhr, A. (eds.) Constitutive Models for Rubber. A.A. Balkema, Rotterdam (1999), pp. 211–220 5. Lake, G.J., Lindley, P.B.: Ozone cracking, flex cracking and fatigue of rubber. Part 2: Technological aspects. Rubber J. 164, 30–39 (1964) 6. Stacer, R.G., Yanyo, L.C., Kelly, F.N.: Observations on the tearing of elastomers. Rubber Chem. Technol. 58, 421–435 (1985) 7. Schuring, D.J., Hall, G.L.: Ambient temperature effects on tire rolling loss. Rubber Chem. Technol. 54, 1113–1123 (1981) 8. Huang, D., LaCount, B.J., Castro, J.M., Ignatz-Hoover, F.: Development of a service-simulating, accelerated aging test method for exterior tire rubber compounds I. Cyclic aging. Polym. Degrad. Stab. 74, 353–362 (2001) 9. Celina, M., Wise, J., Ottesen, D.K., Gillen, K.T., Clough, R.L.: Correlation of chemical and mechanical property changes during oxidative degradation of neoprene. Polym. Degrad. Stab. 68, 171–184 (2000) 10. Drozdov, A.D.: A model for the nonlinear viscoelastic response in polymers at finite strain. Int. J. Solids Struct. 35, 2315–2347 (1998) 11. Payne, A.R.: The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part I. J. Appl. Polym. Sci. 6, 57–63 (1962) 12. Payne, A.R.: Strainwork dependence of filler-loaded vulcanizates. J. Appl. Polym. Sci. 8, 2661–2686 (1965) 13. Lion, A.: Strain-dependent dynamic properties of filled rubber: a nonlinear viscoelastic approach based on structural variables. Rubber Chem. Technol. 72, 410–429 (1999) 14. Baldwin, J.M., Bauer, D.R., Ellwood, K.R.: Rubber aging in tires. Part 1: Field results. Polym. Degrad. Stab. 92, 103–109 (2007) 15. Bauer, D.R., Baldwin, J.M., Ellwood, K.R.: Rubber aging in tires. Part 2: Accelerated oven aging tests. Polym. Degrad. Stab. 92, 110–117 (2007) 16. Heinrich, G., Klüppel, M.: Recent advances in the theory of filler networking in elastomers. Adv. Polym. Sci. 160, 1–44 (2002) 17. Griffith, A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. A 221, 163–198 (1920) 18. Rivlin, R.S., Thomas, A.G.: Rupture of rubber. I. Characteristic energy for tearing. J. Polym. Sci. 10, 291–318 (1953) 19. Gent, A.N., Lindley, P.B., Thomas, A.G.: Cut growth and fatigue of rubbers. I. The relationship between cut growth and fatigue. J. Appl. Polym. Sci. 8, 455–466 (1964) 20. Stoček, R., Heinrich, G., Gehde, M., Kipscholl, R.: A new testing concept for determination of dynamic crack propagation in rubber materials. KGK— Kautsch. Gummi Kunstst. 65, 49–53 (2012) 21. Stoček, R., Heinrich, G., Gehde, M., Rauschenbach, A.: Investigations about notch length in pure-shear test specimen for exact analysis of crack propagation in elastomers. J. Plast. Technol. Issue 1, 2–22 (2012) 22. Ghosh, P., Stoček, R., Gehde, M., Mukhopadhyay, R., Krishnakumar, R.: Investigation of fatigue crack growth characteristics of NR/BR blend based tyre tread compounds. Int. J. Fract. 188, 9–21 (2014)
utb.fulltext.sponsorship This paper was written with the support of the Education for Competitiveness Operational Program co-funded by the European Social Fund (ESF) and the government of the Czech Republic, in the project entitled ‘Advanced Theoretical and Experimental Studies of Polymer Systems’ (reg. number: CZ.1.07/2.3.00/20.0104), and with the support of the Research and Development for Innovations Operational Program, co-founded by European Regional Development Fund (ERDF) and the government of the Czech Republic, in the project entitled ‘Centre of Polymer Systems’ (reg. number: CZ.1.05/2.1.00/03.0111).
utb.wos.affiliation [Stocek, R.] PRL Polymer Res Lab Sro, Zlin, Czech Republic; [Stocek, R.; Kratina, O.; Malac, J.] Tomas Bata Univ Zlin, Ctr Polymer Syst, Zlin, Czech Republic; [Kratina, O.; Malac, J.] Tomas Bata Univ Zlin, Fac Technol, Dept Polymer Engn, Zlin, Czech Republic; [Ghosh, P.; Mukhopadhyay, R.] Hari Shankar Singhania Elastomer & Tyre Res Inst, Kankroli, Rajasthan, India
utb.fulltext.projects CZ.1.07/2.3.00/20.0104
utb.fulltext.projects CZ.1.05/2.1.00/03.0111
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam