Publikace UTB
Repozitář publikační činnosti UTB

Development of a catalytic model system using nitrous oxide

Repozitář DSpace/Manakin

Zobrazit minimální záznam

dc.title Development of a catalytic model system using nitrous oxide en Beltrán-Prieto, Juan Carlos Kolomazník, Karel
dc.relation.ispartof WSEAS Transactions on Environment and Development
dc.identifier.issn 1790-5079 OCLC, Ulrich, Sherpa/RoMEO, JCR 2018
utb.relation.volume 14
dc.citation.spage 256
dc.citation.epage 262
dc.type article
dc.language.iso en
dc.publisher World Scientific and Engineering Academy and Society
dc.subject 1,2,3 propanotriol en
dc.subject Control en
dc.subject Dihydroxypropanal en
dc.subject Mathematical model en
dc.subject Nitrous oxide en
dc.subject Oxidation en
dc.description.abstract Currently, special attention is paid to partial oxidation of several sugar alcohols because it generates oxidation intermediate products with high utility value. In the present paper, we study the modelling of oxidation reaction of 1,2,3 propanotriol using an oxidizing agent in low concentrations. A major problem of such oxidation system is its low reactivity and high oxidation reactivity of products, As a result, the yield to a specific compound (i.e. dihydroxypropanal) depends on the ratio of rate constants of the consecutive reactions and also on the initial concentration of oxidizing agent. In this case, as the input value for the model calculations we chose a ratio of values of the specified rate constants and initial concentrations of nitrous oxide and 1,2,3-propanotriol. Accordingly, an experimental setup was proposed to follow the variation of temperature of the reaction blend after gradual addition of ammonium nitrate to a solution of 1,2,3 propanotriol, which can provide insights for the control of the chemical reactor. © 2018, World Scientific and Engineering Academy and Society. All Rights Reserved. en
utb.faculty Faculty of Applied Informatics
utb.identifier.scopus 2-s2.0-85045054401
utb.source j-scopus 2018-04-23T15:01:50Z 2018-04-23T15:01:50Z
dc.description.sponsorship LO1303, MŠMT, Ministerstvo Školství, Mládeže a Tělovýchovy
utb.contributor.internalauthor Beltrán-Prieto, Juan Carlos
utb.contributor.internalauthor Kolomazník, Karel
utb.fulltext.affiliation JUAN CARLOS BELTRAN-PRIETO, KAREL KOLOMAZNIK Faculty of Applied Informatics Tomas Bata University in Zlín Nám. T. G. Masaryka 5555, 760 01 Zlín CZECH REPUBLIC
utb.fulltext.dates -
utb.fulltext.references [1] F. A. Carey, R. M. Giuliano, R. Álvarez Manzo, M. del C. Doria Serrano, S. Sarmiento Ortega, and J. A. Velázquez Arellano, Organic Chemistry, McGraw-Hill Education, 2014. [2] L. G. Wade, Organic Chemistry, Pearson, 2012. [3] M. L. de Araújo, D. Mandelli, Y. N. Kozlov, W. A. Carvalho, and G. B. Shul’pin, Oxidation of hydroxyacetone (acetol) with hydrogen peroxide in acetonitrile solution catalyzed by iron(III) chloride, J. Mol. Catal. A Chem., Vol. 422, 2016, pp. 103–114. [4] T. Kageyama, Y. Yoshida, and T. Sugizaki, Studies on bromite. IX. Oxidation of secondary alcohols with sodium bromite in the alkaline aqueous solution added with metal ions, Nippon Kagaku Kaishi, Vol. 1986, No. 6, 1986, pp. 792–795. [5] D. S. Fullerton and C.-M. Chen, In Situ Allylic Oxidations With Collins Reagent, Synth. Commun., Vol. 6, No. 3, 1976, pp. 217–220. [6] M. Li and M. E. Johnson, Oxidation of Certain 4-Substituted Phenethyl Alcohols with Collins Reagent: On the Mechanism of a CarbonCarbon Bond Cleavage, Synth. Commun., Vol. 25, No. 4, 1995, pp. 533–537. [7] S. Chandrasekaran and V. Ganesh, Oxidation Adjacent to Oxygen of Alcohols by Chromium Reagents, in Comprehensive Organic Synthesis II, 2014, pp. 277–294. [8] R. J. Fessenden and J. S. Fessenden, Organic chemistry. Brooks/Cole, 1994. [9] John Mcmurry, Organic Chemistry, Brooks Cole 2013. [10] R. Stewart and R. van der Linden, The mechanism of the permanganate oxidation of fluoro alcohols in aqueous solution, Discuss. Faraday Soc., Vol. 29, No. 0, 1960, pp. 211. [11] G. Tojo and M. Fernandez, Selective Oxidations of Secondary Alcohols in Presence of Primary Alcohols, in Oxidation of Alcohols to Aldehydes and Ketones, Springer-Verlag, 2006, pp. 339–349. [12] B. Ohtani, S.-I. Takamiya, Y. Hirai, M. Sudoh, S.-I. Nishimoto, and T. Kagiya, Catalytic Oxidation with Nitrous Oxide: Oxidation of Alcohols, Ethers and Amines in an Aqueous Suspension of Platinum Particles at Room Temperature, J. Chem. Soc., Perkin Trans, No. 2, 1992, pp. 175-179. [13] H. S. Fogler, Elements of Chemical Reaction Engineering, Prentice Hall, 1999. [14] B. A. Finlayson, Introduction to Chemical Engineering Computing. John Wiley and Sons, Inc, 2006. [15] I. Tosun, Modeling in Transport Phenomena, Elsevier, 2007 [16] R. L. Burden and J. D. Faires, Numerical Methods, Brooks Cole, 2002. [17] A. S. Foust, L. A. Wenzel, C. W. Clump, L. Maus, and L. B. Andersen, Principles of unit operations, John Wiley & Sons, Inc, 1980. [18] G. Stephanopoulos, Chemical Process Control: An Introduction to Theory and Practice. Prentice-Hall, 1984. [19] E. D. Seborg, T. F. Edgar, and D. Mellichamp, Process Dynamics and Control. John Wiley and Sons, Inc., 1989. [20] R. Aris, Elementary Chemical Reactor Analysis. Dover Publications, 2000
utb.fulltext.sponsorship This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme project No. LO1303 (MSMT7778/2014).
utb.scopus.affiliation Faculty of Applied Informatics, Tomas Bata University in Zlín, Nám. T. G. Masaryka 5555, Zlín, Czech Republic
utb.fulltext.projects LO1303 (MSMT7778/2014)
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam