TBU Publications
Repository of TBU Publications

Enhancing the supercapacitor performance of flexible MnOxCarbon cloth electrodes by Pd-decoration

DSpace Repository

Show simple item record

dc.title Enhancing the supercapacitor performance of flexible MnOxCarbon cloth electrodes by Pd-decoration en
dc.contributor.author Babkova, Tatiana
dc.contributor.author Fei, Haojie
dc.contributor.author Kazantseva, Natalia E.
dc.contributor.author Sapurina, Irina Yu.
dc.contributor.author Sáha, Petr
dc.relation.ispartof Electrochimica Acta
dc.identifier.issn 0013-4686 OCLC, Ulrich, Sherpa/RoMEO, JCR
dc.date.issued 2018
utb.relation.volume 272
dc.citation.spage 1
dc.citation.epage 10
dc.type article
dc.language.iso en
dc.publisher Elsevier Ltd.
dc.identifier.doi 10.1016/j.electacta.2018.03.143
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S0013468618306583
dc.subject Carbon cloth en
dc.subject Electrodeposition en
dc.subject Manganese oxide en
dc.subject Nucleation and growth en
dc.subject Palladium en
dc.subject Supercapacitor en
dc.description.abstract Manganese oxide (MnOx)-based hybrid electrode materials have been designed by electrochemical deposition on carbon cloth preliminary activated by palladium (Pd) nanoparticles. The synthesis conditions (current density, deposition time) were chosen in such a way as to achieve a stable structure of MnOx with a large surface area. The structural parameters and surface morphology of materials obtained are characterized by Scanning Electron and Transmission Electron Microscopy (SEM, TEM), Raman spectroscopy, X-ray Photoelectron Spectroscopy (XPS), etc. The electrochemical behavior was investigated by cyclic voltammetry, galvanostatic charge/discharge and impedance spectroscopy. The attained results indicate that MnOx deposits reviled birnessite-type structural feature. Apart from that, the morphology of MnOx transformed with increasing of current density from needlelike structure to loosely-packed thin sheets and then to closed-packed thicker sheets structures. Different morphology exhibits different specific surface area and electrochemical efficiency. Hence electrochemical analysis reviled the highest specific capacitance (186 F g−1) and cyclic stability for MnOxPdCC with obtained at current density of 1 mA cm−2. It can be explained by the formation of a less dense structure of MnOx (loosely-packed thin sheets) with large specific surface area and thus better permeability for Na+ and SO4 −2 ions. As to the role of Pd, its nanoparticles deposited on CC can play a dual role, namely electron conducting passway between CC and MnOx and structure–guiding agent of manganese oxides nucleation and grows. © 2018 Elsevier Ltd en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1007878
utb.identifier.obdid 43879642
utb.identifier.scopus 2-s2.0-85045018770
utb.identifier.wok 000430690200001
utb.identifier.coden ELCAA
utb.source j-scopus
dc.date.accessioned 2018-04-23T15:01:49Z
dc.date.available 2018-04-23T15:01:49Z
dc.description.sponsorship CZ.1.05/2.1.00/19.0409, CPS, Center for Produce Safety; ERDF, European Regional Development Fund; LO1504, NPU, Northwestern Polytechnical University; LTACH17015, MOE, Ministry of Education
dc.description.sponsorship Ministry of Education, Youth, and Sports of the Czech Republic [LTACH17015]; NPU Program I [LO1504]; Operational Program Research and Development for Innovations; European Regional Development Fund (ERDF); national budget of the Czech Republic [CZ.1.05/2.1.00/19.0409]
utb.contributor.internalauthor Babkova, Tatiana
utb.contributor.internalauthor Fei, Haojie
utb.contributor.internalauthor Kazantseva, Natalia E.
utb.contributor.internalauthor Sapurina, Irina Yu.
utb.contributor.internalauthor Sáha, Petr
utb.fulltext.affiliation T.A. Babkova * , H. Fei, N.E. Kazantseva, I.Y. Sapurina, P. Saha Centre of Polymer Systems, Tomas Bata University in Zlin, Tr. T. Bati 5678, Zlin, 760 01, Czech Republic * Corresponding author. E-mail address: tbabkova@cps.utb.cz (T.A. Babkova).
utb.fulltext.dates Received 17 December 2017 Received in revised form 19 March 2018 Accepted 22 March 2018 Available online 23 March 2018
utb.fulltext.references [1] S.W. Zhang, G.Z. Chen, Manganese oxide based materials for supercapacitors, Energy Mater (2008) 186. [2] B. Babakhani, D.G. Ivey, Effect of electrodeposition conditions on the electrochemical capacitive behavior of synthesized manganese oxide electrodes, J. Power Sources 196 (2011) 10762. [3] C.M. Julien, A. Mauger, Nanostructured MnO 2 as electrode materials for energy storage, J. Nanomater. 7 (2017) 396. [4] W. Wei, X. Cui, X. Mao, W. Chen, D.G. Ivey, Morphology evolution in anodically electrodeposited manganese oxide nanostructures for electrochemical supercapacitor applications e effect of supersaturation ratio, Electrochim. Acta 56 (2011) 1619. [5] M. Dupont, A.F. Hollenkamp, S.W. Donne, Electrochemically active surface area effects on the performance of manganese dioxide for electrochemical capacitor applications, Electrochim. Acta 104 (2013) 140. [6] Q. Ghodbane, J.L. Paskal, F. Favier, Microstructural effects on charge-storage properties in MnO 2 -based electrochemical supercapacitors, ACS Appl. Mater. Interfaces 5 (2009) 1130. [7] J. Sanchez-Gonzalez, F. Stoeckli, T.A. Centeno, The role of the electric conductivity of carbons in the electrochemical capacitor performance, J. Electroanal. Chem. 657 (2011) 176. [8] G. Cao, X. Li, Y. Wang, F. C Walsh, J.H. Ouyang, D. Jia, Y. Zhou, Materials and fabrication of electrode scaffolds for deposition of MnO2 and their true performance in supercapacitors, J. Power Sources 293 (2015) 657. [9] P.V. Lam, K. Jo, C.H. Kim, J.H. Kim, H.J. Lee, S.H. Lee, Activated carbon textile via chemistry of metal extraction for supercapacitors, ACS Nano 10 (2016) 11351. [10] T. Ouyang, K. Cheng, F. Yang, J. Jiang, J. Yan, K. Zhu, K. Ye, G. Wang, L. Zhou, D. Cao, A general in-situ etching and synchronous heteroatom doping strategy to boost the capacitive performance of commercial carbon fiber cloth, Chem. Eng. J. 335 (2018) 638. [11] B. Yao, J. Zhang, T. Kou, Y. Song, T. Liu, Y. Li, Paper-based electrodes for flexible energy storage devices, Adv. Sci. 7 (2017). [12] H. Li, L. Jiang, Q. Cheng, Y. He, V. Pavlinek, P. Saha, C. Li, MnO 2 nanoflakes/hierarchical porous carbon nanocomposites for high-performance super-capacitor electrodes, Electrochim. Acta 164 (2015) 252. [13] A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse, D. Aurbach, Carbon-based composite materials for supercapacitor electrodes: a review, J. Mater. Chem. 5 (2017). [14] Y. Saito, M. Meguro, M. Ashizawa, K. Waki, R. Yuksel, H.E. Unalan, H. Matsumoto, Manganese dioxide nanowires on carbon nanofiber frameworks for efficient electrochemical device electrodes, RSC Adv. 20 (2017) 12351. [15] X. Li, G. Wang, X. Wang, X. Li, J. Li, Flexible supercapacitor based on MnO 2 nanoparticles via electrospinning, J. Mater. Chem. 1 (2013) 10103. [16] X. Du, X. Zhao, Z. Huang, Y. Li, Q. Zhang, Freestanding composite electrodes of MnO x embedded carbon nanofibers for high-performance supercapacitors, RSC Adv. 4 (2014) 39087. [17] X. Gu, J. Yue, L. Li, H. Xue, J. Yang, X. Zhao, General synthesis of MnOx (MnO2, Mn2O3, Mn3O4, MnO) hierarchical microspheres as lithium-ion battery anodes, Electrochim. Acta 184 (2015) 250. [18] A. Sarcar, A.K. Satpati, V. Kumar, S. Kumar, Sol-gel synthesus of manganese oxide films and their predominant electrochemical properties, Electrochim. Acta 167 (2015) 126. [19] X. Zhang, X. Sun, H. Zhang, D. Zhang, Y. Ma, Microwave-assisted reflux rapid synthesis of MnO 2 nanostructures and their application in supercapacitors, Electrochim. Acta 87 (2013) 637. [20] P. Wang, Y.-J. Zhao, L.-X. Wen, J.-F. Chen, Z.-G. Lei, Ultrasound-microwave-assisted synthesis of MnO 2 supercapacitor electrode materials, Ind. Eng. Chem. Res. 53 (2014) 20116. [21] X. Hu, X. Lin, Z. Ling, X. Fu, Fabrication and characteristics of galvanostatic electrodeposited MnO 2 on porous nickel from etched aluminium, Electrochim. Acta 138 (2014) 132. [22] H. Xu, X. Hu, Y. Sun, H. Yang, X. Liu, Y. Huang, Flexible fiber-shaped supercapacitors based on hierarchically nanostructured composite electrodes, Nano Res. 8 (2015) 1148. [23] T. Brousse, M. Toupin, R. Dugas, L. Athouel, O. Crosnier, D. Belanger, Crystalline Mno2 as possible alternatives to amorphous compounds in electrochemical supercapacitors, J. Electrochem. Soc. 153 (2006) 2171. [24] M. Dupont, S.W. Donne, Nucleation and growth of electrodeposited manganese dioxide for electrochemical capacitors, Electrochim. Acta 120 (2014) 219. [25] M.F. Dupont, S.W. Donne, Electrolytic manganese dioxide structural and morphological effects on capacitive performance, Electrochim. Acta 191 (2016) 479. [26] W. Huang, J. Li, Y. Xu, Nucleation/Growth Mechanisms and Morphological evolution of porous MnO 2 coating deposited on graphite for supercapacitor, Materials 10 (2017) 1205. [27] A.L.M. Reddy, M.M. Shaijumon, R. Gowda, P.M. Ajayan, Multisegmented AuMnO2/carbon nanotube hybrid coaxil arrays for high-power supercapacitor applications, J. Phys. Chem. C 114 (2010) 658. [28] P.-Y. Tang, Y.-Q. Zhao, Y.-M. Wang, C.-L. Xu, A metal-decorated nickel foam- inducing regulatable manganese dioxide nanosheet array architecture for high-performance supercapacitor applications, Nanoscale 5 (2013) 8156. [29] W. Bai, Q. Sheng, J. Zheng, Three-dimensional nanostructures formed from morphologies controlled synthesis of Pt particles based on gas-liquid reaction for electro-catalytic application, ACS Sustain. Chem. Eng. 4 (2016) 4895. [30] C. Julien, M. Massot, Spectroscopic studies of the local structure in positive electrodes for lithium batteries, Phys. Chem. Chem. Phys. 4 (2002) 4226. [31] C. Julien, M. Massot, C. Poinsignon, Lattice vibrations of manganese oxides Part I, Periodic Struct. Spectrochim. Acta Part A 60 (2004) 689. [32] M. Chigane, M. Ishikawa, Manganese oxide thin film preparation by potentiostatic electrolyses and electrochromism, J. Electrochem. Soc. 147 (2000) 2246. [33] M. Oku, K. Hirokawa, S. Ikeda, X-ray photoelectron spectroscopy of manganese-oxygen systems, J. Electron. Spectrosc. Relat. Phenom. 7 (1975) 465. [34] C. Zhu, S. Guo, Y. Fang, L. Han, E. Wang, S. Dong, One-step electrochemical approach to the synthesis of graphene/MnO 2 nanowall hybrids, Nano Res. 4 (2011) 648. [35] I. Aldama, V. Barranco, T.A. Centeno, J. Ibanez, J.M. Rojo, Composite electrodes made from carbon cloth as supercapacitor material and manganese and cobalt oxide as battery one, J. Electrochem. Soc. 163 (2016) A758. [36] Y.-C. Chen, Y.-K. Hsu, Y.-G. Lin, Y.-K. Lin, Y.-Y. Horng, L.-C. Chen, K.eH. Chen, Highly flexible supercapacitors with manganese oxide nanosheet/carbon cloth electrode, Electrochim. Acta 56 (2011) 7124. [37] H. Zang, G. Cao, Z. Wang, Y. Yang, Z. Shi, Z. Gu, Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage et al, Nano Lett. 8 (2008) 2664. [38] C.-C. Wang, H.-C. Chen, S.-Y. Lu, Manganese oxide/graphene aerogel composites as an outstanding supercapacitor electrode material, Chem. Eur. J. 20 (2014) 517e523. [39] S. Hassan, M. Suzuki, S. Mori, A.A. El-Moneim, MnO 2 /carbon nanowall electrode for future energy storage application: effect of carbon nanowall growth period and MnO2 mass loading, RSC Adv. 4 (2014) 20479.
utb.fulltext.sponsorship his work was mainly supported by the Ministry of Education, Youth, and Sports of the Czech Republic (project no. LTACH17015), NPU Program I (LO1504) and Operational Program Research and Development for Innovations co-funded by the European Regional Development Fund (ERDF) and national budget of the Czech Republic, within the framework of the CPS e strengthening research capacity (reg. number: CZ.1.05/2.1.00/19.0409). L. Münster and M. Micusik also acknowledged for their assistance with collecting TEM images and XPS analysis.
utb.scopus.affiliation Centre of Polymer Systems, Tomas Bata University in Zlin, Tr. T. Bati 5678, Zlin, Czech Republic
Find Full text

Files in this item

Show simple item record