TBU Publications
Repository of TBU Publications

Antibacterial and antibiofouling properties of light triggered fluorescent hydrophobic carbon quantum dots Langmuir-Blodgett thin films

DSpace Repository

Show simple item record

dc.title Antibacterial and antibiofouling properties of light triggered fluorescent hydrophobic carbon quantum dots Langmuir-Blodgett thin films en
dc.contributor.author Stanković, Nenad K.
dc.contributor.author Bodik, Michal
dc.contributor.author Šiffalovič, Peter
dc.contributor.author Kotlar, Mario
dc.contributor.author Mičušik, Matej
dc.contributor.author Špitalsky, Zdenko
dc.contributor.author Danko, Martin
dc.contributor.author Milivojević, Dušan D.
dc.contributor.author Kleinova, Angela
dc.contributor.author Kubat, Pavel
dc.contributor.author Capáková, Zdenka
dc.contributor.author Humpolíček, Petr
dc.contributor.author Lehocký, Marián
dc.contributor.author Todorović Marković, Biljana M.
dc.contributor.author Marković, Zoran M.
dc.relation.ispartof ACS Sustainable Chemistry and Engineering
dc.identifier.issn 2168-0485 OCLC, Ulrich, Sherpa/RoMEO, JCR
dc.date.issued 2018
utb.relation.volume 6
utb.relation.issue 3
dc.citation.spage 4154
dc.citation.epage 4163
dc.type article
dc.language.iso en
dc.publisher American Chemical Society
dc.identifier.doi 10.1021/acssuschemeng.7b04566
dc.relation.uri https://pubs.acs.org/doi/abs/10.1021/acssuschemeng.7b04566
dc.subject Hydrophobic carbon quantum dots en
dc.subject Langmuir-Blodgett thin films en
dc.subject Photodynamic therapy en
dc.subject Singlet oxygen en
dc.description.abstract Inimitable properties of carbon quantum dots as well as a cheap production contribute to their possible application in biomedicine especially as antibacterial and antibiofouling coatings. Fluorescent hydrophobic carbon quantum dots are synthesized by bottom-up condensation method and used for deposition of uniform and homogeneous Langmuir-Blodgett thin films on different substrates. It is found that this kind of quantum dots generates singlet oxygen under blue light irradiation. Antibacterial and antibiofouling testing on four different bacteria strains (Escherichia coli, Staphylococcus aureus, Bacillus cereus, and Pseudomonas aeruginosa) reveals enhanced antibacterial and antibiofouling activity of hydrophobic carbon dots thin films under blue light irradiation. Moreover, hydrophobic quantum dots show noncytotoxic effect on mouse fibroblast cell line. These properties enable potential usage of hydrophobic carbon quantum dots thin films as excellent antibacterial and antibiofouling coatings for different biomedical applications. © 2018 American Chemical Society. en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1007792
utb.identifier.obdid 43879615
utb.identifier.scopus 2-s2.0-85042225982
utb.identifier.wok 000427092900146
utb.source j-scopus
dc.date.accessioned 2018-04-23T15:01:44Z
dc.date.available 2018-04-23T15:01:44Z
dc.description.sponsorship FP7, Seventh Framework Programme; 2/0093/16, VEGA, Vedecká Grantová Agentúra MŠVVaŠ SR a SAV; 609427, REA, Research Executive Agency; Marie Curie Cancer Care; SAV, Slovenská Akadémia Vied; APVV-15-0641, Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja; DS021, Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja; 172003, Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja; SK-SRB-2016-0038, Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja; 17-05095S, Aeronautical Science Foundation of China
dc.description.sponsorship SASPRO Programme Project [1237/02/02-b]; People Programme (Marie Curie Actions) European Union's Seventh Framework Programme under REA Grant [609427]; Slovak Academy of Sciences; Ministry of Education, Science and Technological Development of the Republic of Serbia [172003]; bilateral project Serbia-Slovakia [SK-SRB-2016-0038]; multilateral scientific and technological cooperation in the Danube region [DS021]; VEGA [2/0093/16]; Czech Science Foundation [17-05095S]; [APVV-15-0641]
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Capáková, Zdenka
utb.contributor.internalauthor Humpolíček, Petr
utb.contributor.internalauthor Lehocký, Marián
utb.fulltext.affiliation Nenad K. Stanković , † Michal Bodik, ‡ Peter Šiffalovič , ‡ Mario Kotlar, § Matej Mičušik, ∥ Zdenko Špitalsky, ∥ Martin Danko, ∥ Duš an D. Milivojević , ⊥ Angela Kleinova, ∥ Pavel Kubat, # Zdenka Capakova, ∇ Petr Humpoliček, ∇ Marian Lehocky, ∇ Biljana M. Todorović Marković , ⊥ and Zoran M. Marković * ,∥,⊥ † The School of Electrical Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, 11000 Belgrade, Serbia ‡ Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 84541 Bratislava, Slovakia § Center for Nano-diagnostics STU, Vazovova 5, 81243 Bratislava, Slovakia ∥ Polymer Institute, Slovak Academy of Sciences, Dubravska cesta 9, 84541 Bratislava, Slovakia ⊥ Vinč a Institute of Nuclear Sciences, University of Belgrade, POB 522, 11001 Belgrade, Serbia # J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejš kova 3, 182 23 Praha 8, Czech Republic ∇ Centre of Polymer Systems, Tomas Bata University in Zlín, Trida Tomase Bati 5678, Zlín, Czech Republic Corresponding Author *E-mail: zoran.markovic@savba.sk; zm25101967@yahoo.com. Phone: +421-2-3229 4326. ORCID Peter Šiffalovič : 0000-0002-9807-0810 Martin Danko: 0000-0002-6188-0094 Petr Humpolič ek: 0000-0002-6837-6878 Marian Lehocky: 0000-0002-5368-5029 Biljana M. Todorović Marković : 0000-0002-0704-4327 Zoran M. Marković : 0000-0001-5917-4337
utb.fulltext.dates Received: December 4, 2017 Revised: January 29, 2018 Published: February 8, 2018
utb.fulltext.references (1) Wang, Y.; Hu, A. Carbon Quantum Dots: Synthesis, Properties and Applications. J. Mater. Chem. C 2014, 2, 6921−6939. (2) Li, X.; Wang, H.; Shimizu, Y.; Pyatenko, A.; Kawaguchi, K.; Koshizaki, N. Preparation of Carbon Quantum Dots with Tunable Photoluminescence by Rapid Laser Passivation in Ordinary Organic Solvents. Chem. Commun. 2011, 47, 932−934. (3) Gokus, T.; Nair, R. R.; Bohmler, A.; Lombardo, A.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C.; Hartschuh, A. Making Graphene Luminescent by Oxygen Plasma Treatment. ACS Nano 2009, 3, 3963−3968. (4) Li, H.; He, X.; Kang, Z.; Huang, H.; Liu, Y.; Liu, J.; Lian, S.; Tsang, C. H.; Yang, X.; Lee, S. T. Water-soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design. Angew. Chem., Int. Ed. 2010, 49, 4430−4434. (5) Pan, D.; Zhang, J.; Li, Z.; Wu, M. Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots. Adv. Mater. 2010, 22, 734−738. (6) Peng, J.; Gao, W.; Gupta, B. K.; Liu, Z.; Romero Aburto, R.; Ge, L.; Song, L.; Alemany, L. B.; Zhan, X.; Gao, G.; Vithayathil, S. A.; Kaipparettu, B. A.; Marti, A. A.; Hayashi, T.; Zhu, J. J.; Ajayan, P. M. Graphene Quantum Dots Derived from Carbon Fibers. Nano Lett. 2012, 12, 844−849. (7) Zhu, H.; Wang, X.; Li, Y.; Wang, Z.; Yang, F.; Yang, X. Microwave Synthesis of Fluorescent Carbon Nanoparticles with Electrochemiluminescence Properties. Chem. Commun. 2009, 34, 5118−5120. (8) Mitra, S.; Chandra, S.; Kundu, T.; Banerjee, R.; Pramanik, P.; Goswami, A. Rapid Microwave Synthesis of Fluorescent Hydrophobic Carbon Dots. RSC Adv. 2012, 2, 12129−12131. (9) Gude, V. Synthesis of Hydrophobic Photoluminescent Carbon Nanodots by Using L-tyrosine and Citric Acid through a Thermal Oxidation Route. Beilstein J. Nanotechnol. 2014, 5, 1513−1522. (10) Oliveira, O. N., Jr. Langmuir-Blodgett Films-Properties and Possible Applications. Braz. J. Phys. 1992, 22, 60−69. (11) Hann, R. A. Molecules for Langmuir-Blodgett Film Formation. Philos. Trans. R. Soc., A 1990, 330, 141−152. (12) Chitu, L.; Siffalovic, P.; Majkova, E.; Jergel, M.; Vegso, K.; Luby, S.; Capek, I.; Satka, A.; Perlich, J.; Timmann, A.; Roth, S. V.; Keckes, J.; Maier, G. A. Modified Langmuir-Blodgett Deposition of Nanoparticles - Measurement of 2D to 3D Ordered Arrays. Meas. Sci. Rev. 2010, 10, 162−165. (13) Aldeek, F.; Mustin, C.; Balan, L.; Roques-Carmes, T.; Fontaine-Aupart, M. P.; Schneider, R. Surface-engineered Quantum Dots for the Labeling of Hydrophobic Microdomains in Bacterial Biofilms. Biomaterials 2011, 32, 5459−5470. (14) Liu, Q.; Guo, B.; Rao, Z.; Zhang, B.; Gong, J. R. Strong Two-photon-induced Fluorescence from Photostable, Biocompatible Nitrogen-doped Graphene Quantum Dots for Cellular and Deep-tissue Imaging. Nano Lett. 2013, 13, 2436−2441. (15) Jovanović , S. P.; Syrgiannis, Z.; Marković , Z. M.; Bonasera, A.; Kepić , D. P.; Budimir, M. D.; Milivojević , D. D.; Spasojević , V. D.; Dramićanin, M. D.; Pavlović , V. B.; Todorović Marković , B. M. Modification of Structural and Luminescence Properties of Graphene Quantum Dots by Gamma Irradiation and Their Application in a Photodynamic Therapy. ACS Appl. Mater. Interfaces 2015, 7, 25865−25874. (16) Ristić , B.; Milenković , M.; Dakić , I.; Todorović -Marković , B.; Milosavljević , M.; Budimir, M.; Paunović , V.; Dramić anin, M.; Marković , Z.; Trajković , D. Photodynamic Antibacterial Effect of Graphene Quantum Dots. Biomaterials 2014, 35, 4428−4435. (17) Gour, N.; Ngo, K. X.; Vebert-Nardin, C. Anti-infectious Surfaces Achieved by Polymer Modification. Macromol. Mater. Eng. 2014, 299, 648−668. (18) Lin, L.; Zhang, H.; Cui, H.; Xu, M.; Cao, S.; Zheng, G.; Dong, M. Preparation and Antibacterial Activities of Hollow Silica−Ag Spheres. Colloids Surf., B 2013, 101, 97−100. (19) Zhang, J.; Feng, Y.; Mi, J.; Shen, Y.; Tu, Z.; Liu, L. Photothermal Lysis of Pathogenic Bacteria by Platinum Nanodots Decorated Gold Nanorods Under Near Infrared Irradiation. J. Hazard. Mater. 2018, 342, 121−130. (20) Feng, Y.; Liu, L.; Zhang, J.; Aslan, H.; Dong, M. Photoactive Antimicrobial Nanomaterials. J. Mater. Chem. B 2017, 5, 8631−8652. (21) Felgentrager, A.; Maisch, T.; Spath, A.; Schroder, J. A.; Baumler, W. Singlet Oxygen Generation in Porphyrin-doped Polymeric Surface Coating Enables Antimicrobial Effects on Staphylococcus Aureus. Phys. Chem. Chem. Phys. 2014, 16, 20598. (22) Morozov, M.; Carmieli, R.; Lahav, M.; Van der Boom, M. E. Light-activated Antibacterial Nanoscale Films: Metallo-organics for Catalytic Generation of Chemically Accessible Singlet Oxygen in Water. ChemistrySelect 2017, 2, 577−582. (23) Noimark, S.; Allan, E.; Parkin, I. P. Light-activated Antimicrobial Surfaces with Enhanced Efficacy Induced by a Dark-activated Mechanism. Chem. Sci. 2014, 5, 2216−2223. (24) Ochsner, M. J. Photophysical and Photobiological Processes in the Photodynamic Therapy of Tumours. J. Photochem. Photobiol., B 1997, 39, 1−18. (25) Sibata, C. H.; Colussi, V. C.; Oleinick, N. L.; Kinsella, T. J. Photodynamic Therapy: A new Concept in Medical Treatment. Braz. J. Med. Biol. Res. 2000, 33, 869−880. (26) Neč as, D.; Klapetek, P. Gwyddion: An Open-source Software for SPM Data Analysis. Cent. Eur. J. Phys. 2012, 10, 181−188. (27) Henke, P.; Kirakci, K.; Kubá t, P.; Fraiberk, M.; Forstová , J.; Mosinger, J. Polystyrene Nanofiber Materials Modified with an Externally Bound Porphyrin Photosensitizer. ACS Appl. Mater. Interfaces 2016, 8, 25127. (28) Wyckoff, R. W. G. Crystal Structures; John Wiley: New York, 1963. (29) Ricardo, K. B.; Sendecki, A.; Liu, H. Surfactant-free Exfoliation of Graphite in Aqueous Solutions. Chem. Commun. 2014, 50, 2751−2754. (30) Zhu, S.; Song, Y.; Zhao, X.; Shao, J.; Zhang, J.; Yang, B. The Photoluminescence Mechanism in Carbon Dots (Graphene quantum dots, Carbon nanodots, and Polymer dots): Current State and Future Perspective. Nano Res. 2015, 8, 355−381. (31) Jovanović , S. P.; Marković , Z. M.; Syrgiannis, Z.; Dramić anin, M. D.; Arcudi, F.; La Parola, V.; Budimir, M. D.; Todorović Marković , B. M. Enhancing Photoluminescence of Graphene Quantum Dots by Thermal Annealing of the Graphite Precursor. Mater. Res. Bull. 2017, 93, 183−193. (32) Yang, Y.; Cui, J.; Zheng, M.; Hu, C.; Tan, S.; Xiao, Y.; Yang, Q.; Liu, Y. One-step Synthesis of Amino-functionalized Fluorescent Carbon Nanoparticles by Hydrothermal Carbonization of Chitosan. Chem. Commun. 2012, 48, 380−382. (33) Zong, J.; Yang, X.; Trinchi, A.; Hardin, S.; Cole, I.; Zhu, Y.; Li, C.; Muster, T.; Wei, G. Photoluminescence Enhancement of Carbon Dots by Gold Nanoparticles Conjugated via PAMAM Dendrimers. Nanoscale 2013, 5, 11200−11206. (34) Hsu, P.-C.; Shih, Z.-Y.; Lee, C.-H.; Chang, H.-T. Synthesis and Analytical Applications of Photoluminescent Carbon Nanodots. Green Chem. 2012, 14, 917−920. (35) McMurry, J. Organic Chemistry; Brooks/Cole: Pacific Grove, CA, 2000. (36) Nakanishi, K.; Solomon, P. H. Infrared Absorption Spectroscopy; Holden-Day, Inc.: San Francisco, CA, 1977. (37) Schmidt, R.; Seikel, K.; Brauer, H. D. Determination of the Phosphorescence Quantum Yield of Singlet Molecular-oxygen (1Δg) in 5 Different Solvents. J. Phys. Chem. 1989, 93, 4507. (38) Wilkinson, F.; Helman, W. P.; Ross, A. B. Rate Constants for the Decay and Reactions of the Lowest Electronically Excited Singlet State of Molecular Oxygen in Solution. An Expanded and Revised Compilation. J. Phys. Chem. Ref. Data 1995, 24, 663. (39) Vegso, K.; Siffalovic, P.; Majkova, E.; Jergel, M.; Benkovicova, M.; Kocsis, T.; Weis, M.; Luby, S.; Nygard, K.; Konovalov, O. Nonequilibrium Phases of Nanoparticle Langmuir Films. Langmuir 2012, 28, 10409−10414. (40) Doyle, R. J.; Rosenberg, M. Microbial Cell Surface Hydro- phobicity, American Society for Microbiology: Washington, DC, 1990. (41) Notley, S. M.; Crawford, R. J.; Ivanova, E. P. In Advances in Graphene Science; Aliofkhazraei, M., Ed.; InTech: 2013; Chapter 5, pp 100−118.. (42) Walker, T.; Canales, M.; Noimark, S.; Page, K.; Parkin, I.; Faull, J.; Bhatti, M.; Ciric, L. A Light Activated Antimicrobial Surface is Active against Bacterial. Sci. Rep. 2017, 7, 15298. (43) Meziani, M. J.; Dong, X.; Zhu, L.; Jones, L. P.; LeCroy, G. E.; Yang, F.; Wang, S.; Wang, P.; Zhao, Y.; Yang, L.; Tripp, R. A.; Sun, Y. P. Visible-light-activated Bactericidal Functions of Carbon “Quantum” Dots. ACS Appl. Mater. Interfaces 2016, 8, 10761. (44) Tang, L.; Pillai, S.; Revsbech, N. P.; Schramm, A.; Bischoff, C.; Meyer, R. L. Biofilm Retention on Surfaces with Variable Roughness and Hydrophobicity. Biofouling 2011, 27, 111−121. (45) Markovic, Z. M.; Ristic, B. Z.; Arsikin, K. M.; Klisic, Dj. G.; Harhaji-Trajkovic, Lj. M.; Todorovic-Markovic, B. M.; Kepic, D. P.; Kravic-Stevovic, T. K.; Jovanovic, S. P.; Milenkovic, M. M.; Milivojevic, D. D.; Bumbasirevic, V. Z.; Dramicanin, M. D.; Trajkovic, V. S. Graphene Quantum Dots as Autophagy-inducing Photodynamic Agents. Biomaterials 2012, 33, 7084−7092. (46) Kim, S. Y.; Park, J. W. Cellular Defense against Singlet Oxygen-induced Oxidative Damage by Cytosolic NADP+-Dependent Isocitrate Dehydrogenase. Free Radical Res. 2003, 37, 309−316. (47) Lushchak, V. Adaptive Response to Oxidative Stress: Bacteria, Fungi, Plants and Animals. Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol. 2011, 153, 175−190.
utb.fulltext.sponsorship This research was supported by the SASPRO Programme Project 1237/02/02-b. The research leading to these results has received funding from the People Programme (Marie Curie Actions) European Union’s Seventh Framework Programme under REA Grant Agreement No. 609427. Research has been further cofunded by the Slovak Academy of Sciences. Research was also supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Project No. 172003), bilateral project Serbia-Slovakia SK-SRB-2016-0038, and multilateral scientific and technological cooperation in the Danube region (DS021). We also acknowledge support of the APVV-15-0641 and VEGA (2/0093/16). The authors also appreciated the project of Czech Science Foundation (17-05095S). The authors thank Nikola Mikuš ova for technical support.
utb.scopus.affiliation School of Electrical Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, Belgrade, Serbia; Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, Slovakia; Center for Nano-diagnostics STU, Vazovova 5, Bratislava, Slovakia; Polymer Institute, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, Slovakia; Vinča Institute of Nuclear Sciences, University of Belgrade, POB 522, Belgrade, Serbia; J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, Praha 8, Czech Republic; Centre of Polymer Systems, Tomas Bata University in Zlín, Trida Tomase Bati 5678, Zlín, Czech Republic
Find Full text

Files in this item

Show simple item record