TBU Publications
Repository of TBU Publications

Construction of hierarchical CuO/Cu2O@NiCo2S4 Nanowire arrays on copper foam for high performance supercapacitor electrodes

DSpace Repository

Show simple item record


dc.title Construction of hierarchical CuO/Cu2O@NiCo2S4 Nanowire arrays on copper foam for high performance supercapacitor electrodes en
dc.contributor.author Zhou, Luoxiao
dc.contributor.author He, Ying
dc.contributor.author Jia, Congpu
dc.contributor.author Pavlínek, Vladimír
dc.contributor.author Sáha, Petr
dc.contributor.author Cheng, Qilin
dc.relation.ispartof Nanomaterials
dc.identifier.issn 2079-4991 OCLC, Ulrich, Sherpa/RoMEO, JCR
dc.date.issued 2017
utb.relation.volume 7
utb.relation.issue 9
dc.type article
dc.language.iso en
dc.publisher Multidisciplinary Digital Publishing Institute (MDPI AG)
dc.identifier.doi 10.3390/nano7090273
dc.relation.uri http://www.mdpi.com/2079-4991/7/9/273/htm
dc.subject copper oxide en
dc.subject nickel cobalt sulfide en
dc.subject hierarchical composite nanowires en
dc.subject supercapacitor en
dc.subject electrochemical properties en
dc.description.abstract Hierarchical copper oxide @ ternary nickel cobalt sulfide (CuO/Cu2O@NiCo2S4) core-shell nanowire arrays on Cu foam have been successfully constructed by a facile two-step strategy. Vertically aligned CuO/Cu2O nanowire arrays are firstly grown on Cu foam by one-step thermal oxidation of Cu foam, followed by electrodeposition of NiCo2S4 nanosheets on the surface of CuO/Cu2O nanowires to form the CuO/Cu2O@NiCo2S4 core-shell nanostructures. Structural and morphological characterizations indicate that the average thickness of the NiCo2S4 nanosheets is ~20 nm and the diameter of CuO/Cu2O core is ~50 nm. Electrochemical properties of the hierarchical composites as integrated binder-free electrodes for supercapacitor were evaluated by various electrochemical methods. The hierarchical composite electrodes could achieve ultrahigh specific capacitance of 3.186 F cm-2 at 10 mA cm-2, good rate capability (82.06% capacitance retention at the current density from 2 to 50 mA cm-2) and excellent cycling stability, with capacitance retention of 96.73% after 2000 cycles at 10 mA cm-2. These results demonstrate the significance of optimized design and fabrication of electrode materials with more sufficient electrolyte-electrode interface, robust structural integrity and fast ion/electron transfer. © 2017 by the authors. Licensee MDPI, Basel, Switzerland. en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1007498
utb.identifier.obdid 43877156
utb.identifier.scopus 2-s2.0-85029754870
utb.identifier.wok 000411522600042
utb.source j-scopus
dc.date.accessioned 2017-10-16T14:43:39Z
dc.date.available 2017-10-16T14:43:39Z
dc.description.sponsorship 21371057, NSFC, National Natural Science Foundation of China
dc.description.sponsorship National Key R&D Program of China [2016YFE0131200]; National Natural Science Foundation of China [21371057]; International Cooperation Project of Shanghai Municipal Science and Technology Committee [15520721100]
dc.rights Attribution 4.0 International
dc.rights.uri http://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor He, Ying
utb.contributor.internalauthor Pavlínek, Vladimír
utb.contributor.internalauthor Sáha, Petr
utb.contributor.internalauthor Cheng, Qilin
utb.fulltext.affiliation Luoxiao Zhou 1 , Ying He 1,2, *, Congpu Jia 1 , Vladimir Pavlinek 2 , Petr Saha 2 and Qilin Cheng 1,2, * 1 Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237 Shanghai, China; czlx1990@126.com (L.Z.); congpujia@163.com (C.J.) 2 Centre of Polymer Systems, Tomas Bata University in Zlin, nam. T. G. Masaryka 5555, 760 01 Zlin, Czech Republic; vpavlinek@seznam.cz (V.P.); saha@utb.cz (P.S.) * Correspondence: rehey@ecust.edu.cn (Y.H.); chengql@ecust.edu.cn (Q.C.); Tel.: +86-21-64251186 (Y.H.); +86-21-64252181 (Q.C.)
utb.fulltext.dates Received: 13 August 2017 Accepted: 11 September 2017 Published: 15 September 2017
utb.fulltext.references 1. El-Kady, M.F.; Strong, V.; Dubin, S.; Kaner, R.B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326–1330. [CrossRef] [PubMed] 2. Yu, Z.; Duong, B.; Abbitt, D.; Thomas, J. Highly ordered MnO 2 nanopillars for enhanced supercapacitor performance. Adv. Mater. 2013, 25, 3302–3306. [CrossRef] [PubMed] 3. Su, D.; McDonagh, A.; Qiao, S.; Wang, G. High-capacity aqueous potassium-ion batteries for large-scale energy storage. Adv. Mater. 2017, 29, 1604007. [CrossRef] [PubMed] 4. Lin, K.; Chen, Q.; Gerhardt, M.; Tong, L.; Kim, S.; Eisenach, L.; Valle, A.; Hardee, D.; Gordon, R.; Aziz, M.; et al. Alkaline quinone flow battery. Science 2015, 349, 1529–1532. [CrossRef] [PubMed] 5. Simon, P.; Gogotsi, Y.; Dunn, B. Where do batteries end and supercapacitors begin? Science 2014, 343, 1210–1211. [CrossRef] [PubMed] 6. Huang, Y.; Tao, J.; Meng, W.; Zhu, M.; Huang, Y.; Fu, Y.; Gao, Y.; Zhi, C. Super-high rate stretchable polypyrrole-based supercapacitors with excellent cycling stability. Nano Energy 2015, 11, 518–525. [CrossRef] 7. Chen, T.; Hao, R.; Peng, H.; Dai, L. High-performance, stretchable, wire-shaped supercapacitors. Angew. Chem. Int. Ed. 2015, 54, 618–622. [CrossRef] 8. Liu, C.; Li, F.; Lai, P.M.; Cheng, H. Advanced materials for energy storage. Adv. Mater. 2010, 22, E28–E62. [CrossRef] [PubMed] 9. Li, B.; Dai, F.; Xiao, Q.; Yang, L.; Shen, J.; Zhang, C.; Cai, M. Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ. Sci. 2016, 9, 102–106. [CrossRef] 10. Gawli, Y.; Banerjee, A.; Dhakras, D.; Deo, M.; Bulani, D.; Wadgaonkar, P.; Shelke, M.; Ogale, S. 3D polyaniline architecture by concurrent inorganic and organic acid doping for superior and robust high rate supercapacitor performance. Sci. Rep. 2016, 6, 21002. [CrossRef] [PubMed] 11. Liu, X.; Gao, Y.; Yang, G. A flexible, transparent and super-long-life supercapacitor based on ultrafine Co 3 O 4 nanocrystal electrodes. Nanoscale 2016, 8, 4227–4235. [CrossRef] [PubMed] 12. Xiong, G.; He, P.; Wang, D.; Zhang, Q.; Chen, T.; Fisher, T. Hierarchical Ni–Co hydroxide petals on mechanically robust graphene petal poam for high-energy asymmetric supercapacitors. Adv. Funct. Mater. 2016, 26, 5460–5470. [CrossRef] 13. Dai, Z.; Zang, X.; Yang, J.; Sun, C.; Si, W.; Huang, W.; Dong, X. Template synthesis of shape-tailorable NiS 2 hollow prisms as high-performance supercapacitor materials. ACS Appl. Mater. Interfaces 2015, 7, 25396–25401. [CrossRef] [PubMed] 14. Chen, J.; Guan, G.; Gui, Y.; Blackwood, D. Rational design of self-supported Ni 3 S 2 nanosheets array for advanced asymmetric supercapacitor with a superior energy density. ACS Appl. Mater. Interfaces 2017, 9, 496–504. [CrossRef] [PubMed] 15. Liu, S.; Mao, C.; Niu, Y.; Yi, F.; Hou, J.; Lu, S.; Jiang, J.; Xu, M.; Li, C. Facile synthesis of novel networked ultralong cobalt sulde nanotubes and its application in supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 25568–25573. [CrossRef] [PubMed] 16. Peters, A.; Li, Z.; Farha, O.; Hupp, J. Atomically precise growth of catalytically active cobalt sulde on flat surfaces and within a metal-organic framework via atomic layer deposition. ACS Nano 2015, 9, 8484–8490. [CrossRef] [PubMed] 17. Guan, B.; Yu, L.; Wang, X.; Song, S.; Lou, X. Formation of onion-like NiCo 2 S 4 particles via sequential ion-exchange for hybrid supercapacitors. Adv. Mater. 2017, 29, 1605051. [CrossRef] [PubMed] 18. Hou, L.; Bao, R.; Chen, Z.; Rehan, M.; Tong, L.; Pang, G.; Yuan, C. Comparative investigation of hollow mesoporous NiCo 2 S 4 ellipsoids with enhanced pseudo-capacitances towards high-performance asymmetric supercapacitors. Electrochim. Acta 2016, 214, 76–84. [CrossRef] 19. Kong, W.; Lu, C.; Zhang, W.; Pu, J.; Wang, Z. Homogeneous core-shell NiCo 2 S 4 nanostructures supported on nickel foam for supercapacitors. J. Mater. Chem. A 2015, 3, 12452–12460. [CrossRef] 20. Xiao, J.; Zeng, X.; Chen, W.; Xiao, F.; Wang, S. High electrocatalytic activity of self-standing hollow NiCo 2 S 4 single crystalline nanorod arrays towards sulfide redox shuttles in quantum dot-sensitized solar cells. Chem. Commun. 2013, 49, 11734–11736. [CrossRef] [PubMed] 21. Wang, J.-G.; Jin, D.; Zhou, R.; Shen, C.; Xie, K.; Wei, B. One-step synthesis of NiCo 2 S 4 ultrathin nanosheets on conductive substrates as advanced electrodes for high-efficient energy storage. J. Power Sources 2016, 306, 100–106. [CrossRef] 22. Wang, J.-G.; Zhou, R.; Jin, D.; Xie, K.; Wei, B. Controlled synthesis of NiCo 2 S 4 nanostructures on nickel foams for high-performance supercapacitors. Energy Storage Mater. 2016, 2, 1–7. [CrossRef] 23. Shen, L.; Wang, J.; Xu, G.; Li, H.; Dou, H.; Zhang, X. NiCo 2 S 4 Nanosheets grown on nitrogen-doped carbon foams as an advanced electrode for supercapacitors. Adv. Energy Mater. 2015, 5, 1400977. [CrossRef] 24. Niu, L.; Wang, Y.; Ruan, F.; Shen, C.; Shan, S.; Xu, M.; Sun, Z.; Li, C.; Liu, X.; Gong, Y. In situ growth of NiCo 2 S 4 @Ni 3 V 2 O 8 on Ni foam as binder-free electrode for asymmetric supercapacitors. J. Mater. Chem. A 2016, 4, 5669–5677. [CrossRef] 25. Fu, W.; Zhao, C.; Han, W.; Liu, Y.; Zhao, H.; Ma, Y.; Xie, E. Cobalt sulfide nanosheets coated on NiCo 2 S 4 nanotube arrays as electrode materials for high-performance supercapacitors. J. Mater. Chem. A 2015, 3, 10492–10497. [CrossRef] 26. Xu, W.; Dai, S.; Liu, G.; Xi, Y.; Hu, C.; Wang, X. CuO nanoflowers growing on carbon fiber fabric for flexible high-performance supercapacitors. Electrochim. Acta 2016, 203, 1–8. [CrossRef] 27. Xu, P.; Liu, J.; Liu, T.; Ye, K.; Cheng, K.; Yin, J.; Cao, D.; Wang, G.; Li, Q. Preparation of binder-free CuO/Cu 2 O/Cu composites: A novel electrode material for supercapacitor applications. RSC Adv. 2016, 6, 28270–28278. [CrossRef] 28. Zhang, J.; Zhang, G.; Luo, W.; Sun, Y.; Jin, C.; Zhang, W. Graphitic carbon coated CuO hollow nanospheres with penetrated mesochannels for high-performance asymmetric supercapacitors. ACS Sustain. Chem. Eng. 2017, 5, 105–111. [CrossRef] 29. Yang, Y.; Pei, L.; Xu, X.; Xu, J.; Shen, J.; Ye, M. In-situ growth of self-assembled 3D Cu 2 O@Cu foam with enhanced electrochemical properties. Electrochim. Acta 2016, 221, 56–61. [CrossRef] 30. Ruan, J.; Huo, Y.; Hu, B. Three-dimensional Ni(OH) 2 /Cu 2 O/CuO porous cluster grown on nickel foam for high performance supercapacitor. Electrochim. Acta 2016, 215, 108–113. [CrossRef] 31. Li, Z.; Shao, M.; Zhou, L.; Zhang, R.; Zhang, C.; Han, J.; Wei, M.; Evans, D.; Duan, X. A flexible all-solid-state micro-supercapacitor based on hierarchical CuO@layered double hydroxide core–shell nanoarrays. Nano Energy 2016, 20, 294–304. [CrossRef] 32. Zhao, J.; Shu, X.; Wang, Y.; Yu, C.; Zhang, J.; Cui, J.; Qin, Y.; Zheng, H.; Liu, J.; Zhang, Y.; et al. Construction of CuO/Cu 2 O@CoO core-shell nanowire arrays for high-performance supercapacitors. Surf. Coat. Technol. 2016, 299, 15–21. [CrossRef] 33. Filipic, G.; Cvelbar, U. Copper oxide nanowires: A review of growth. Nanotechnology 2012, 23, 194001. [CrossRef] [PubMed] 34. Wu, F.; Myung, Y.; Banerjee, P. Unravelling transient phases during thermal oxidation of copper for dense CuO nanowire growth. CrystEngComm 2014, 16, 3264–3267. [CrossRef] 35. Lamberti, A.; Fontana, M.; Bianco, S.; Tresso, E. Flexible solid-state Cu x O-based pseudo-supercapacitor by thermal oxidation of copper foils. Int. J. Hydrog. Energy 2016, 41, 11700–11708. [CrossRef] 36. Chen, H.; Jiang, J.; Zhang, L.; Wan, H.; Qi, T.; Xia, D. Highly conductive NiCo 2 S 4 urchin-like nanostructures for high-rate pseudocapacitors. Nanoscale 2013, 5, 8879–8883. [CrossRef] [PubMed] 37. Sun, S.; Zhang, X.; Song, X.; Liang, S.; Wang, L.; Yang, Z. Bottom-up assembly of hierarchical Cu 2 O nanospheres: Controllable synthesis, formation mechanism and enhanced photochemical activities. CrystEngComm 2012, 14, 3545–3553. [CrossRef] 38. Li, B.; Liu, T.; Hu, L.; Wang, Y. A facile one-pot synthesis of Cu 2 O/RGO nanocomposite for removal of organic pollutant. J. Phys. Chem. Solids 2013, 74, 635–640. [CrossRef] 39. Dubal, D.; Gund, G.; Holze, R.; Lokhande, C. Mild chemical strategy to grow micro-roses and micro-woolen like arranged CuO nanosheets for high performance supercapacitors. J. Power Sources 2013, 242, 687–698. [CrossRef] 40. Hu, W.; Chen, R.; Xie, W.; Zou, L.; Qin, N.; Bao, D. CoNi 2 S 4 nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications. ACS Appl. Mater. Interfaces 2014, 6, 19318–19326. [CrossRef] [PubMed] 41. Sun, H.; Qin, D.; Huang, S.; Guo, X.; Li, D.; Luo, Y.; Men, Q. Dye-sensitized solar cells with NiS counter electrodes electrodeposited by a potential reversal technique. Energy Environ. Sci. 2011, 4, 2630–2637. [CrossRef] 42. Pu, J.; Cui, F.; Chu, S.; Wang, T.; Sheng, E.; Wang, Z. Preparation and electrochemical characterization of hollow hexagonal NiCo 2 S 4 nanoplates as pseudocapacitor materials. ACS Sustain. Chem. Eng. 2014, 2, 809–815. [CrossRef] 43. Legrand, D.; Nesbitt, H.; Bancroft, G. X-ray photoelectron spectroscopic study of a pristine millerite (NiS) surface and the effect of air and water oxidation. Am. Mineral. 1998, 83, 1256–1265. [CrossRef] 44. Chen, W.; Xia, C.; Alshareef, H. One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors. ACS Nano 2014, 8, 9531–9541. [CrossRef] [PubMed] 45. Pu, J.; Wang, T.; Wang, H.; Tong, Y.; Lu, C.; Kong, W.; Wang, Z. Direct growth of NiCo 2 S 4 nanotube arrays on nickel foam as high-performance binder-free electrodes for supercapacitors. ChemPlusChem 2014, 45, 577–583. 46. Wan, H.; Jiang, J.; Yu, J.; Xu, K.; Miao, L.; Zhang, L.; Chen, K.; Ruan, Y. NiCo 2 S 4 porous nanotubes synthesis via sacrificial templates: High-performance electrode materials of supercapacitors. CrystEngComm 2013, 15, 7649–7651. [CrossRef] 47. Yuan, C.; Li, J.; Hou, L.; Zhang, X.; Shen, L.; Lou, X. Ultrathin mesoporous NiCo 2 O 4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv. Funct. Mater. 2012, 22, 4592–4597. [CrossRef] 48. Chen, H.; Jiang, J.; Zhang, L.; Xia, D.; Zhao, Y.; Guo, D.; Qi, T.; Wan, H. In situ growth of NiCo 2 S 4 nanotube arrays on Ni foam for supercapacitors: Maximizing utilization efficiency at high mass loading to achieve ultrahigh areal pseudocapacitance. J. Power Sources 2014, 254, 249–257. [CrossRef] 49. Wang, J.; Wang, S.; Huang, Z.; Yu, Y. High-performance NiCo 2 O 4 @Ni 3 S 2 core/shell mesoporous nanothorn arrays on Ni foam for supercapacitors. J. Mater. Chem. A 2014, 2, 17595–17601. [CrossRef] 50. Nguyen, V.; Lamiel, C.; Shim, J. 3D hierarchical mesoporous NiCo 2 S 4 @Ni(OH) 2 core-shell nanosheet arrays for high performance supercapacitors. New J. Chem. 2016, 40, 4810–4817. [CrossRef]
utb.fulltext.sponsorship This work was supported by National Key R&D Program of China (2016YFE0131200), the National Natural Science Foundation of China (21371057) and International Cooperation Project of Shanghai Municipal Science and Technology Committee (15520721100).
utb.scopus.affiliation Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China; Centre of Polymer Systems, Tomas Bata University in Zlin, nam. T. G. Masaryka 5555, Zlin, Czech Republic
utb.fulltext.projects 2016YFE0131200
utb.fulltext.projects 21371057
utb.fulltext.projects 15520721100
Find Full text

Files in this item

Show simple item record

Attribution 4.0 International Except where otherwise noted, this item's license is described as Attribution 4.0 International