TBU Publications
Repository of TBU Publications

Interface-engineered MoS2/C nanosheet heterostructure arrays for ultra-stable sodium-ion batteries

DSpace Repository

Show simple item record


dc.title Interface-engineered MoS2/C nanosheet heterostructure arrays for ultra-stable sodium-ion batteries en
dc.contributor.author Wang, Haiyan
dc.contributor.author Jiang, Hao
dc.contributor.author Hu, Yanjie
dc.contributor.author Sáha, Petr
dc.contributor.author Cheng, Qilin
dc.contributor.author Li, Chunzhong
dc.relation.ispartof Chemical Engineering Science
dc.identifier.issn 0009-2509 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2017
utb.relation.volume 174
dc.citation.spage 104
dc.citation.epage 111
dc.type article
dc.language.iso en
dc.publisher Elsevier
dc.identifier.doi 10.1016/j.ces.2017.09.007
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S0009250917305523
dc.subject flexible electrode en
dc.subject heterointerface en
dc.subject micro-area etching en
dc.subject MoS2 en
dc.subject sodium ion batteries en
dc.description.abstract Development of ultra-stable high capacity electrodes is imperative for the widespread commercialization of sodium-ion batteries. Herein, we employed a micro-area etching and surface functionalization strategy to synthesize two-dimensional (2D) MoS2/C nanosheets with a well-defined heterointerface vertically anchored on a carbon cloth. The large MoS2/C nanosheet heterointerface and a high interlayer distance (0.99 nm) not only facilitated Na+ intercalation but also improved the diffusion kinetics of Na+ in the 2D interlayer space. A modulation of the cut-off voltage yielded a high specific capacity of 433 mAh g−1 at 0.2 A g−1 and 232 mAh g−1 at 10 A g−1 within the potential range of 0.4–3.0 V. These values are much higher than that of pure MoS2 nanosheet arrays (162 mAh g−1 at 10 A g−1). More importantly, during the first 1500 cycles, the capacity was maintained at ∼320 mAh g−1 at 1 A g−1, while after 10000 cycles, it became approximately ∼271 mAh g−1 at 3 A g−1. These are the best values ever reported for MoS2-based anode materials for SIBs. Furthermore, after being assembled into a flexible battery, it withstand repeated bending for over 200 times without any obvious capacity loss. Hence, this material is a promising electrode for future flexible batteries. © 2017 Elsevier Ltd en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1007484
utb.identifier.obdid 43877208
utb.identifier.scopus 2-s2.0-85029067498
utb.identifier.wok 000413321000009
utb.identifier.coden CESCA
utb.source j-scopus
dc.date.accessioned 2017-10-16T14:43:38Z
dc.date.available 2017-10-16T14:43:38Z
dc.description.sponsorship 21522602, NSFC, National Natural Science Foundation of China; 51672082, NSFC, National Natural Science Foundation of China; 91534202, NSFC, National Natural Science Foundation of China
dc.description.sponsorship National Natural Science Foundation of China [21522602, 51672082, 91534202]; International Science and Technology Cooperation Program of China [2016YFE0131200]; Shanghai Rising-Star Program [15QA1401200]; Basic Research Program of Shanghai [17JC1402300]; Fundamental Research Funds for the Central Universities [222201718002]
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Sáha, Petr
utb.fulltext.affiliation Haiyan Wang a , Hao Jiang a, ⇑ , Yanjie Hu a , Petr Saha b , Qilin Cheng a , Chunzhong Li a, ⇑ a Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China b Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida T. Bati 5678, 760 01 Zlin, Czech Republic ⇑ Corresponding authors. E-mail addresses: jianghao@ecust.edu.cn (H. Jiang), czli@ecust.edu.cn (C. Li).
utb.fulltext.dates Received 25 July 2017 Received in revised form 26 August 2017 Accepted 1 September 2017 Available online 7 September 2017
utb.fulltext.references Augustyn, V., Come, J., Lowe, M.A., Kim, J.W., Taberna, P.L., Tolbert, S.H., Abruña, H. D., Simon, P., Dunn, B., 2013. High-rate electrochemical energy storage through Li + intercalation pseudocapacitance. Nat. Mater. 12, 518–522. Augustyn, V., Simonbc, P., Dunn, B., 2014. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597–1614. Bang, G.S., Nam, K.W., Kim, J.Y., Shin, J., Choi, J.W., Choi, S.Y., 2014. Effective liquid- phase exfoliation and sodium ion battery application of MoS 2 nanosheets. ACS Appl. Mater. Interfaces 6, 7084–7089. Brezesinski, T., Wang, J., Tolbert, S.H., Dunn, B., 2010. Ordered mesoporous a -MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 9, 146–151. Cabana, B.J., Monconduit, L., Larcher, D., Palacín, M.R., 2010. Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, E170–E192. Chao, D., Liang, P., Chen, Z., Bai, L., Shen, H., Liu, X., Xia, X., Zhao, Y., Savilov, S.V., Lin, J., Shen, Z.X., 2016. Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 10, 10211–10219. Cook, J.B., Kim, H.S., Yan, Y., Ko, J.S., Robbennolt, S., Dunn, B., Tolbert, S.H., 2016. Mesoporous MoS2 as a transition metal dichalcogenide exhibiting pseudocapacitive Li and Na-ion charge storage. Adv. Energy Mater. 6, 1501937. Ding, Y.L., Kopold, P., Hahn, K., Van Aken, P.A., Maier, J., Yu, Y., 2016. A lamellar hybrid assembled from metal disulfide nanowall arrays anchored on a carbon layer: in situ hybridization and improved sodium storage. Adv. Mater. 28, 7774–7782. Dong, S., Shen, L., Li, H., Pang, G., Dou, H., Zhang, X., 2016. Flexible sodium-ion pseudocapacitors based on 3D Na 2 Ti 3 O 7 nanosheet arrays/carbon textiles anode. Adv. Funct. Mater. 26, 3703–3710. Fang, Y., Lv, Y., Gong, F., Elzatahry, A.A., Zheng, G., Zhao, D., 2016. Synthesis of 2D-mesoporous-carbon/MoS 2 heterostructures with well-defined interfaces for high-performance lithium-ion batteries. Adv. Mater. 28, 9385–9390. Grey, C.P., Tarascon, J.M., 2017. Sustainability and in situ monitoring in battery development. Nat. Mater. 1, 45–56. Hu, Z., Wang, L., Zhang, K., Wang, J., Cheng, F., Tao, Z., Chen, J., 2014. MoS 2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew. Chem. Int. Ed. 53, 13008–13012. Kim, H., Hong, J., Yoon, G., Kim, H., Park, K.Y., Park, M.S., Yoon, W.S., Kang, K., 2015. Sodium intercalation chemistry in graphite. Energy Environ. Sci. 10, 2963–2969. Kim, H., Kim, H., Ding, Z., Lee, M.H., Lim, K., Yoon, G., Kang, K., 2016. Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater. 6, 1600943. Kresse, G., Furthmüller, J., 1996a. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50. Kresse, G., Furthmüller, J., 1996b. Efficient iterative schemes for ab initio total- energy calculations using a plane-wave basis set. Physical review B 54, 11169. Li, Y., Liang, Y., Hernandez, F.C.R., Yoo, H.D., An, Q., Yao, Y., 2015. Enhancing sodium- ion battery performance with interlayer-expanded MoS 2 -PEO nanocomposites. Nano Energy 15, 453–461. Liu, K.K., Zhang, W.J., Lee, Y.H., Lin, Y.C., Chang, M.T., Su, C.Y., Chang, C.S., Li, H., Shi, Y. M., Zhang, H., Lai, C.S., Li, L.J., 2012. Growth of large-area and highly crystalline MoS2thin layers on insulating substrates. Nano Lett. 12, 1538–1544. Liu, Y., He, X., Hanlon, D., Harvey, A., Coleman, J.N., Li, Y., 2016. Liquid phase exfoliated MoS 2 nanosheets percolated with carbon nanotubes for high volumetric/areal capacity sodium-ion batteries. ACS Nano 10, 8821–8828. Liu, C., Zhang, C., Fu, H., Nan, X., Cao, G., 2017. Exploiting high-performance anode through tuning the character of chemical bonds for Li-ion batteries and capacitors. Adv. Energy Mater. 7, 1601127. Miwa1, R.H., Scopel, W.L., 2013. Lithium incorporation at the MoS 2 /graphene interface: an ab initio investigation. J. Phys. Condens. Matter 25, 445301. Park, J.S., Kim, J.S., Park, J.W., Nam, T.H., Kim, K.W., Ahn, J.H., Wang, G.X., Ahn, H.J., 2013. Discharge mechanism of MoS 2 for sodium ion battery: electrochemical measurements and characterization. Electrochim. Acta 92, 427–432. Slater, D.M., Kim, D., Lee, E., Johnson, C.S., 2013. Sodium-ion batteries. Adv. Funct. Mater. 23, 947–958. Stevens, D.A., Dahn, J.R., 2000. An in situ small-angle X-ray scattering study of sodium insertion into a nanoporous carbon anode material within an operating electrochemical cell.J. Electrochem. Soc. 147, 4428–4431. Su, L., Hei, J., Wu, X., Wang, L., Zhou, Z., 2017. Ultrathin layered hydroxide cobalt acetate nanoplates face-to-face anchored to graphene nanosheets for high- efficiency lithium storage. Adv. Funct. Mater. 27, 1605544. Sun, Y., Alimohammadi, F., Zhang, D., Guo, G., 2017. Enabling colloidal synthesis of edge-oriented MoS 2 with expanded interlayer spacing for enhanced HER catalysis. Nano Lett. 17, 1963–1969. Ventosa, E., Xia, W., Klink, S., Mantia, F.L., Muhler, M., Schuhmann, W., 2012. Influence of surface functional groups on lithium ion intercalation of carbon cloth. Electrochim. Acta 65, 22–29. Wang, W., Liu, W., Zeng, Y., Han, Y., Yu, M., Lu, X., Tong, Y., 2015. A novel exfoliation strategy to significantly boost the energy storage capability of commercial carbon cloth. Adv. Mater. 27, 3572–3578. Wang, Y., Qu, Q., Li, G., Gao, T., Qian, F., Shao, J., Liu, W., Shi, Q., Zheng, H., 2016. 3D interconnected and multiwalled carbon@MoS 2 @carbon hollow nanocables as outstanding anodes for Na-ion batteries. Small 12, 6033–6041. Xie, X., Makaryan, T., Zhao, M., Van Aken, K.L., Gogotsi, Y., Wang, G., 2016. Nanosheets vertically aligned on carbon paper: a freestanding electrode for highly reversible sodium-ion batterie. Adv. Energy Mater. 6, 1502161. Xiong, X., Luo, W., Hu, X., Chen, C., Qie, L., Hou, D., Huang, Y., 2015. Flexible membranes of MoS 2 /C nanofibers by electrospinning as binder-free anodes for high-performance sodium-ion batteries. Sci. Rep. 5, 9254. Xu, J., Wang, M., Wickramaratne, N.P., Jaroniec, M., Dou, S., Dai, L., 2015. High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams. Adv. Mater. 12, 2042–2048. Yu, Y., Li, C., Liu, Y., Su, L., Zhang, Y., Cao, L., 2013. Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS 2 films. Sci. Rep. 3, 1866– 1871. Zhang, G., Hou, S., Zhang, H., Zeng, W., Yan, F., Li, C.C., Duan, H., 2015. High- performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core-shell nanorod arrays on a carbon cloth anode. Adv. Mater. 27, 2400–2405. Zhang, X., Li, X., Liang, J., Zhu, Y., Qian, Y., 2016. Synthesis of MoS 2 @C nanotubes via the kirkendall effect with enhanced electrochemical performance for lithium ion and sodium ion batteries. Small 12, 2484–2491. Zhou, M., Xu, Y., Xiang, J., Wang, C., Liang, L., Wen, L., Fang, Y., Mi, Y., Lei, Y., 2016. Understanding the orderliness of atomic arrangement toward enhanced sodium storage. Adv. Energy Mater. 6, 1600448. Zhu, C., Mu, X., van Aken, P.A., Yu, Y., Maier, J., 2014. Single-layered ultrasmall nanoplates of MoS 2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew. Chem. Int. Ed. 53, 2152–2156.
utb.fulltext.sponsorship This work was supported by the National Natural Science Foundation of China (21522602, 51672082, 91534202), the International Science and Technology Cooperation Program of China (2016YFE0131200), The Shanghai Rising-Star Program (15QA1401200), the Basic Research Program of Shanghai (17JC1402300), and the Fundamental Research Funds for the Central Universities (222201718002).
utb.scopus.affiliation Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China; Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida T. Bati 5678, Zlin, Czech Republic
Find Full text

Files in this item

Show simple item record