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ABSTRACT Motion analysis using wearable sensors is an essential research topic with broad mathematical
foundations and applications in various areas, including engineering, robotics, and neurology. This paper
presents the use of the global navigation satellite system (GNSS) for detecting and recording the position
of a moving body, along with signals from additional sensors, for monitoring of physical activity and
analyzing heart rate dynamics during running on route segments of different slopes and speeds. This method
provides an alternative to the heart monitoring on the treadmill ergometer in the cardiology laboratory.
The proposed computational methodology involves digital data preprocessing, time synchronization, and
data resampling to enable their correlation, feature extraction both in time and frequency domains, and
classification. The datasets include signals acquired during ten experimental runs in the selected area. The
motion patterns detection involves segmenting the signals by analysing the GNSS data, evaluating the
patterns, and classifying the motion signals under different terrain conditions. This classification method
compares neural networks, support vector machine, Bayesian, and k-nearest neighbour methods. The
highest accuracy of 93.3 % was achieved by using combined features and a two-layer neural network for
classification into three classes with different slopes. The proposed method and graphical user interface
demonstrate the efficiency of multi-channel and multi-dimensional signal processing with applications in
rehabilitation, fitness movement monitoring, neurology, cardiology, engineering, and robotic systems.

INDEX TERMS Multichannel signal processing, global navigation satellite systems, feature extraction,
machine learning, computational intelligence, classification, physical activity monitoring, cardiology.

I. INTRODUCTION
Analysis of motion forms a very important research area
with applications in engineering, robotics, biomedicine,
cardiology, and neurology [1], [2], [3], [4], [5], among
others. The rapid progress of related topics is closely
linked to the availability of the Global Positioning Sys-
tem (GPS) for general use, which began in the early
1990s, and the ability to determine position coordinates.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiafeng Xie.

This has opened up new applications in navigation, trans-
port, geodesy, and motion monitoring in physical activi-
ties and sports [6], [7]. The use of these systems has been
associated with the rapid technological progress of spe-
cific sensor systems, smartphones [8], [9], [10], [11], and
smartwatches [12]. The present paper is devoted to this
topic, with applications to the analysis of physical activ-
ities [13], [14], which is important for detecting motion
disorders [15], health monitoring [16], [17], [18], [19],
rehabilitation, and for the study oh heart dynamics as well.
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Wearable sensors are versatile devices with a wide range of
applications. Figure 1 illustrates the approximate timeline of
sensors that have been implemented in smartphones over the
last 30 years, demonstrating the rapid technological progress
of wearable devices [16]. These devices enable monitoring of
motion, environmental data, and physiological signals. The
data collected by these sensors have a wide range of diverse
applications in engineering and biomedicine.

There are several systems taking advantage of GNSS
systems for motion monitoring. Mobile devices are usually
equipped with sensors which are able to cooperate with the
majority of them, including [20], [21] the American GPS
system, the European Galileo, the Russian Glonass, and the
Chinese BeiDou, among others. Uncorrected GNSS systems
using basic information directly from satellites can be quite
imprecise, with an accuracy of several meters. The use of this
system requires the use of signals from at least four satellites.
Three of them provide information about the location and
the fourth one serves as a clock bias which provides the
difference in time between the receiver’s system time and
the satellites’ system time. Figure 2 presents the principle for
locating an object using a set of satellites on the Earth’s orbit
and the GNSS handset.

More sophisticated systems use a real-time kinematic sys-
tem (RTK) for precise geolocation [22], [23] and the GNSS
reference receiver, to increase the precision of the observa-
tion. Mobile phones, on the other hand, typically use GNSS
SPP (Single Point Positioning) or Assisted GNSS (A-GNSS)
techniques for location-based services. These techniques do
not require a reference receiver as they rely on signals from
GNSS satellites and network-based assistance data, respec-
tively. The newest dual band GNSS provide another option
for increasing the accuracy and correcting for atmospheric
effects.

The unifying background of motion analysis is formed
by a similar mathematical background that includes gen-
eral methods of digital signal analysis and processing [24],
[25], optimization methods, computational intelligence, and
the use of machine learning. Associated methods include
functional transforms, time–frequency, and time-scale signal
analysis, using the discrete Fourier and wavelet transforms.

FIGURE 1. Approximate timeline of sensors implemented in smartphones
during the last 30 years showing the rapid technological progress of
wearable instruments.

FIGURE 2. Principle of locating an object using a set of satellites on the
Earth’s orbit and a GNSS handset.

Special methods include image processing and detection of
image components using image, depth, and thermal sensors.

This paper presents the use of the global navigation satel-
lite system (GNSS) [20], [21], [26], [27] for detecting and
recording the position of a moving body [28] during moni-
toring of physical activity and the simultaneous acquisition of
signals from biosensors and accelerometers [29], [30], [31],
[32]. Figure 3 presents the route recorded by the GNSS sys-
tem, its location above the mapping background, and satellite
and physiological signals acquired. Figure 3(c) presents the
altitude profile and changes of the running speed for the
whole route acquired by the GNSS system and presented in
Fig. 3(b). Figures 3(d,e) present accelerometric and heart rate
signals recorded during the run for a selected experiment.

The project has the following objectives: (i) to explore
the use of mobile sensors for monitoring physical activities,
(ii) to propose the use of computational intelligence for data
processing, and (iii) to detect possible heart disorders dur-
ing different loads in the natural environment. The results
obtained during natural runs provide additional information
to the data acquired in a cardiology laboratory using the
treadmill ergometer [33], [34], which allows for changes in
speed and slope during each exercise. The paper shows how
these conditions of data acquisition in the natural environ-
ment can be estimated by the GNSS data recorded by sensors
in the mobile phone. Further, closely related studies [35]
are devoted to the use of wearable photoplethysmographic
sensors during treadmill exercises and in natural conditions.

The proposed method is based upon the analysis of the
signals acquired in real physical conditions from the set of
experiments. Selected data features and machine learning
methods are used to find a computational system for the
evaluation of the patterns of motion under different condi-
tions. This approach is applied to real signals but with the
possible use of similar methods in virtual systems [36], [37]
based on augmented reality and trainers working on virtual
reality platforms allowing motion activities and analysis in
conditions very close to real ones.

II. METHODS
Thewhole dataset includes data recorded bywearable sensors
in a smartphone (the three-axis accelerometer and GNSS
receiver recording terrestrial data of longitude, latitude,

VOLUME 11, 2023 42097



A. Procházka et al.: Motion Analysis Using Global Navigation Satellite System and Physiological Data

FIGURE 3. Route details presenting (a) the location of the experimental trajectory acquired by the Matlab mapping toolbox, (b) the detailed route
and its profile recorded by the GNSS system above the mapping background with the starting/ending point, and (c,d,e) signals acquired during a
selected experiment.

and altitude), and the heart rate sensor (paired with the smart-
watch). These procedures involving human participants were
in accordance with the ethical standards of the institutional
research committee and with the 1964 Helsinki Declaration
and its later amendments.

The experiments include 10 runs in real conditions along
the route, with segments of the different slopes. Detailed
descriptions of each observation are contained at the IEEE
DataPort (doi: https://dx.doi.org/10.21227/759s-8s08) for
further investigation. This repository includes the terres-
trial and physiological data acquired during all experiments,
the Matlab graphical user interface, and a graphical video
abstract of the paper.

A. GNSS DATA PROCESSING
Since the datasets were recorded always on the same route,
there was a requirement for the evaluation of the average
route from all GNSS records. This task was not easy to carry
out because of the fact that there was no quantity which
was constant for a specific point on the route throughout all
measurements. The time elapsed was not equal for all ten
datasets because the total duration of each single run was not
always the same. Also, the distance elapsed did not turn out
to be a good criterion, since the GNSS module records data
with a considerable deviation. So, another approach needed
to be employed. The proposed method includes the following
steps:

1) Organization of the latitude, longitude, and altitude
data in matrices associated with each experiment,

2) Selection of one dataset (one route) as a reference
dataset,

3) Detection of nearest positions in each of following
experiments related to the reference dataset,

4) Evaluation of the average value of the nearest positions
related to the reference one,

5) Determining the computed route as the new initial esti-
mation (reference dataset)

FIGURE 4. Altitude GNSS analysis presenting (a) altitude record during
individual experiments, their mean value, and signal segments with
different mean slopes, and (b) histogram of altitude differences.

6) Averaging of all datasets against the reference one
equally as in previous items,

7) Iterative repetition of this process.
The proposed iterative process was verified by the Delau-

nay triangulation and two-dimensional interpolation. The
selected route with the recorded longitude, latitude, and alti-
tude was used as a reference. Altitude data from each other
experiment were then interpolated into the same positions
to enable the comparison and processing of its recalculated
altitude data.

Figure 4(b) presents the analysis of observed altitude
GNSS values during the set of all ten individual experiments.
Differences between altitude values and their means evalu-
ated for all experiments and all locations formed the set of
13,843 altitude data differences with their zero mean and
standard deviation of 3 m. Owing to the range of altitude
values of 60 meters, this accuracy was sufficient to separate
signal segments with different slopes.
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B. PHYSIOLOGICAL DATA ACQUISITION
Figure 5 presents the locations of the sensors on the body. The
heart rate belt was located regularly on the chest and watches
on the left wrist. The smartphone was located in vertical
position with the display facing away from the back in its
optimal position [4]. Themobile phonewas used as the GNSS
receiver, allowing the selection of the satellite system and
recording of accelerometric data with the mobile Matlab for
data acquisition. All physiological signals were recordedwith
their time stamps to allow their synchronization, resampling,
and analysis.

FIGURE 5. Position of sensors on the body including the heart rate
sensors and the smartphone with the GNSS receiver and the
acceleremetric sensor used with the mobile Matlab for data acquisition.

C. SIGNAL PROCESSING
The mathematical methods of data processing procedures are
closely related to the properties of the sensors used for the
data acquisition. However, in general, signal de-noising and
the extraction of features in both the time and frequency
domains create common problems in the preprocessing stage.

Each signal {x(n)}N−1
n=0 was analysed at first to eliminate

gross measurement errors and then smoothed by the low-pass
finite impulse response (FIR) filter defined by the following
relation:

y(n) =

M−1∑
k=0

b(k) x(n− k). (1)

A selected normalised cutoff frequency fc was used to
evaluate a new sequence {y(n)} for all values of n =

0, 1, 2, · · · ,N − 1 and for filter coefficients {b(k)}M−1
k=0 .

A polynomial approximation of the GNSS data was then
applied to detect signal segments of similar route gradients
and to find the regions with different mean slopes.

Accelerometric data recorded by the three-axis sensor
formed three sequences {sx(n), sy(n), sz(n)}Ln=1, and their
modulus,

s(n) =

√
sx(n)2 + sy(n)2 + sz(n)2, (2)

for n = 0, 1, · · · ,N − 1, was used for further processing.
Signals were analysed in the frequency domain using the

FIGURE 6. Accelerometric data analysis presenting (a) route profile
associated with time stamps and (b) spectrogram of amplitudes of an
accelerometric signal for a selected experiment.

short-time discrete Fourier transform after the removal of the
mean value s̄ = mean({s(n)}N−1

n=0 ) of the observed signal:

S(k) =

N−1∑
n=0

(s(n) − s̄) e−j k n 2 π/N . (3)

Figure 6(b) presents the spectrogram of the accelerometric
signal shown in Fig. 3(d) for a selected experiment 2303 m
long (that lasted 740 s) evaluated with the window length of
1.5 s and the overlap of 50 % between contiguous sections.

The extraction of signal segments used for their subsequent
classification was based upon the gradient of the altitude
GNSS data recorded during each route to separate regions
with different mean slopes.

D. FEATURE DESCRIPTION AND CLASSIFICATION
The classification of Q signal segments by a specific
machine learning method requires the determination of
the pattern and target matrices in most cases. All sig-
nal segments are associated with sets of column feature
vectors (p1, p2, . . . , pj, . . . pQ) and associated target classes
(T1,T2, . . . ,Tj, . . . ,TQ) defined by a selected method (using
the altitude gradient evaluated from the GNSS data in the
given case). Each feature vector {pj}

Q
j=1 includes R features

{p(i, j)}Ri=1 that form the feature matrix PR,Q.
Signal features can be evaluated for data segments in the

time, time–frequency or time-scale domains in most cases
using either the discrete Fourier or wavelet transforms [38].
For accelerometric data, the frequency domain is selected in
most cases. The use of spectral domain features requires the
evaluation of the relative power Ew in the frequency band
Bw = ⟨fc1(w), fc2(w)⟩:

Ew=

∑
k∈8w

|S(k)|2∑L/2
k=0 |S(k)|2

, (4)

where 8w is the set of indices for the frequency components
fk ∈ ⟨fc1(w), fc2(w)⟩. In the given case, two frequency bands
for the evaluation of the relative power were used: B1 =

⟨2.5, 5⟩ Hz and B2 = ⟨5, 10⟩ Hz to define the first (F1) and
the second (F2) feature, respectively.

Commonly used algorithms for signal segment classifica-
tion include the k-nearest neighbour (k-NN) algorithm with
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its modifications, support vector machine, Bayesian, and neu-
ral network methods. To determine the ability of a predictive
model to perform the classification during its practical imple-
mentation, the k-fold cross-validation method is often used.
The cross-validation error is then evaluated as the fraction of
the incorrectly determined target classes of data from the test
set included in one of k folds of the original data set related
to the number of pattern values. In the present paper, the
leave-one-out method is used as a special case of k-fold cross-
validation. The peculiarity of this method is that the number
of folds k is the same as the number of data points in one
data set. Each data point from the data set is extracted and
classified by the rest of the data set.

The evaluation of the classification results was performed
by the analysis of the multi-class receiver operating charac-
teristic (ROC) to illustrate the performance of the classifier
system. The ROC analysis was performed on the basis of a
pairwise comparison of one class against all other classes.
Common performance metrics include:

• Sensitivity of class k (True positive rate, recall) defined
as a probability of correct classification of class k related
to the number of instants belonging to class k:

TPR(k) =
TP(k)

TP(k) + FN (k)
(5)

• Accuracy defined as a probability of global correct
classification:

AC =

∑
k TP(k)∑

k TP(k) +
∑

k FP(k)
(6)

where TP(k), FN (k), and FP(k) stand for the number of true
positive, false negative, and false positive classifications of
elements in class k .

III. RESULTS
The database of spectral measurements includes observations
during 10 conditional runs on the route 2.303 km long in a real
hilly environment with segments of the different mean slopes,
as presented in Figs. 3 and 4. Themean time of running exper-
iments was 798.2 s (with the standard deviation of 35.1 s).
All running sessions were accomplished by a single person
on the same route in similar weather condition to minimise
data interruption. Sensors used [39] for data acquisition are
summarized in Table 1.

TABLE 1. The list of devices and sensors used for monitoring of motion
and data acquisition on the running route.

The longitude and latitude geopositioning data recorded
during each experiment were acquired by the satellite naviga-
tion network and recorded in the mobile Matlab environment.
Their projection onto the geographical environment included

FIGURE 7. Graphical user interface used for the initial selected running
session analysis.

FIGURE 8. Spectral components of the accelerometric signal in the range
of ⟨2, 10⟩ Hz in route segments with the different mean slopes for
10 separate runs.

the following commands and evaluations in theMatlab 2022b
computational system:

\gg geoplot([Latitude],[Longitude],’.r’)
\gg [LatLim,LongLim] = geolimits(gca);
\gg geobasemap steets

The red dots in Fig. 3 point to the route and the selection of
the satellite geographical base map.

In order to simplify the visualisation of the data and the
evaluation of the results, a graphical user interface (GUI)
was created using the Matlab App Designer environment.
The data were imported from the associated database and
processed over several tabs.

Figure 7 presents the fundamental use of the GUI for
visualization of the selected running session, showing the
segmentation of the altitude route profile and the evolution
of the heart rate in the selected segments related to ascending
and descending motion. Further options enable displays of
accelerometric signals, their spectral analysis, and distribu-
tion of selected features associated with different running
patterns related to different route profiles.
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TABLE 2. Values of the mean speed, mean heart rate HR [bpm], and
mean percentage power of the accelerometric data in the frequency
range of ⟨2.5, 5⟩ Hz (F1) and ⟨5, 10⟩ Hz (F2) with associated standard
deviations (std) for segments with different slopes.

FIGURE 9. Distribution of features (heart rate and the mean power in the
frequency range ⟨2.5, 5⟩ Hz) for running in three route segment with
different mean slope and with means of each class and c multiples of
their standard deviations for c = 0.2, 0.5, and 1.

The spectral components of the accelerometric signals
specified by the gradient of altitude GNSS signals in seg-
ments with the different slope presented in Fig. 8 show their
varying components. These properties motivated their use for
feature extraction.

Table 2 presents the values of the mean speed, mean heart
rate, and mean percentage power of the accelerometric data
in the frequency ranges of ⟨2.5, 5⟩ Hz (F1) and ⟨5, 10⟩ Hz
(F2) with associated standard deviations for segments with
different slopes. The mean heart rate and the percentage
power of the accelerometric signals in the first frequency
band were used as two features for the classification of
features associated with route segments of different slopes.
Fig. 9 shows the distribution of these features in three route
segments with means of each class and c multiples of their
standard deviations for c = 0.2, 0.5, and 1.
Table 3 presents a comparison of classification of selected

motion features for running on different slopes into three
classes evaluated by a support vector machine (SVM),
5-nearest neighbour method (5NN), Bayesian method [40],
and a two-layer neural network with the sigmoidal and soft-
max transfer functions using 10 neurons in its first layer. The
pattern matrix was formed by features associated with three

TABLE 3. Classification results of running on different slopes performed
by the support vector machine (SVM), 5-nearest neighbour (5NN),
Bayesian, and two-layer neural network methods using two features
specified as the power in the selected frequency accelerometric data
band and the associated mean heart rate presenting the accuracy (AC),
sensitivities (TPR(k)) of separate classes k , and the cross-validation
errors (CV) calculated by the leave-one-out method.

FIGURE 10. Results of the classification of selected motion features for
running on different mean slopes (a) by the Bayesian method and (b) by
the two-layer neural network.

first route segments and last three segments were used for ver-
ification. All associated algorithms [24] were created in the
computational and visualization environment of MATLAB
2022b with the support of its toolboxes. The cross-validation
errors were calculated by the leave-one-out method.

Figure 10 displays the results of classifying motion into
three categories using the Bayesian method and a two-layer
neural network. The results reveal that the clusters’ locations
and mean heart rate values vary depending on the segment
slope.

IV. DISCUSSION
The paper is devoted to the study of the global navigation
satellite system and selected wearable sensors for motion
analysis. A set of 10 experiments was used for route segment
analysis in the time and frequency domains. Analysis of
GNSS data pointed to a standard deviation of altitude data of
three meters for the given set of 13,843 satellite observations.
Selected mathematical methods were used to classify route
segments with the different mean slope.

The most important features for the classification of the
route segments were based on signals recorded by the heart
rate sensor and accelerometer inside a smartphone located in
a selected body position. The heart rate and power of the
accelerometric signals in selected frequency bands formed
the most important features for further classification to sep-
arate clusters at different route segments. The classification
accuracy reached 93.3% for the two-layer neural network
with the cross-validation error by the leave-one-out method
of 0.1.
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TABLE 4. The summary of selected references and their keywords
devoted to motion monitoring using GNSS systems combined with
physiological data analysis published in 2020–2022.

Table 4 presents a very limited summary of selected ref-
erences devoted to motion monitoring using GNSS sys-
tems, wearable sensors for physiological data acquisition, and
machine learning methods for signal analysis published in
2020–2022. Interest in related methods is rapidly increasing
due to the fast technological progress and their wide range of
applications.

V. CONCLUSION
The paper presents possibilities of themotionmonitoring dur-
ing running experiments to classify the heart rate dynamics
at different external conditions. A graphical user interface for
the analysis ofmotion patterns acquired in real conditionswas
created and used for the visualization of the route segments,
the analysis of the observed signals, and their segmentation
and classification.

These results suggest that this method could help in iden-
tifying motion patterns based upon signals observed either in
real conditions or in advanced virtual reality environments
that can replace real situations. Future studies should focus
on more complex computational methods and the use of
sensor systems to monitor motion patterns, recognize motion
disorders, and control mobile systems in engineering and
biomedicine. The applications will include the use of more
sophisticated sensors to study heart dynamics and monitor
possible heart disorders. Further studies will explore the
use of portable electrocardiographs to detect heart problems
more accurately. All of these topics are closely related to the
development of further mathematical methods, deep learn-
ing strategies, heart rate controllers, and augmented reality
utilization.
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