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Abstract 

The postyield rheological regime is investigated in sheared magnetic field-responsive composites (i.e. 

carbonyl iron based magnetorheological fluids). When subjected to uniaxial DC fields, high-speed 

videomicroscopy techniques and dedicated image analysis tools demonstrate that dispersed magnetic 

microparticles self-assemble to form concentric layered patterns above a particular shear rate (γ˙R,c). 

This critical shear rate for layer formation is dictated by a critical Mason number Mnc ~ 1 that is 

associated to the destruction of the last doublet in the chain-like aggregates. The number of layers, 

mean width, percentage of occupation and mean period are found to be very weakly dependent on 

the shear rate in start-up shearing flow tests. Experimental data for the mean period are in good 

agreement with an energy minimization theory.  

 

Keywords: Magnetorheology, magnetorheological fluids, flow-field superposition, start-up, layered 
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1. Introduction 

Conventional magnetorheological (𝑀𝑅) fluids are smart composites consisting of magnetizable 

microparticles dispersed in a non-magnetic Newtonian liquid carrier. In the absence of magnetic fields, 

the suspensions behave as regular non-Brownian suspensions. However, in the presence of magnetic 

fields, particles become magnetized and aggregate to form chain-like structures in the field direction 

[1, 2]. Interestingly, other patterns, apart from those elongated structures, can be obtained by a 

combination of flow and field configurations. For instance, layered patterns have been reported in 

three different scenarios [3]: (a) constant magnetic field and oscillatory shear flow, (b) rotating 

magnetic field and no flow and (c) constant magnetic field and steady shear flow. In this manuscript, 



we are interested in expanding the current knowledge concerning the third possibility by carefully 

studying the formed structures through dedicated image analysis techniques. 

In the absence of a flow kinematics, particles aggregate into oriented chain-like structures under 

uniaxial 𝐷𝐶 fields. However, in the presence of steady shearing flows, these field-induced structures 

break (at the yield point), and the viscosity decreases. This shear-thinning behavior in the postyield 

regime is dictated by only two dimensionless numbers: the particle volume fraction 𝜙 and the Mason 

number Mn [4, 5]. Unfortunately, the direct microscopic observation of the field-induced structures 

under a shear flow is hard to be performed and, as a result, very few papers have been published so 

far. Actually, previous work has been restricted to two particularly simple cases: small Mn and 

oscillatory shear [6, 7] and large Mn and steady simple shear [3, 8, 9]. 

In the case of small Mn (lower than approx. 0.3), Cutil-las and coworkers [6, 7] reported the formation 

of a periodic layered pattern in the flow direction under oscillatory shear for strains above a critical 

value 𝛾𝑐 ~ 0.15. Stripes separate (and do not coalesce) due to repulsive forces between surface 

magnetic charges in each individual stripe. yc was found to be independent of the cell thickness, the 

field strength and the Peclet number. Moreover, the mean period of the layers was predicted from 

energy minimization even though the structure was formed by the flow-field superposition. The mean 

period of the pattern decreased with the particle concentration and increased with the field strength 

and the gap size. 

In the case of large Mn (till approx. 15), Volkova and coworkers [3, 8, 9] reported the formation of 

layered patterns along the flow field in steady shear using cone-plate geometries. The appearance of 

these layers was associated with a critical shear rate 𝛾˙𝑐 (for a critical Mason number Mnc ~ 1) and the 

breakage of the last doublet in the suspension. Unfortunately, a quantitative analysis of the observed 

structures was not reported in their paper. Similar layers have been observed in numerical simulation 

studies on electrorheological (𝐸𝑅) fluids, e.g. [10], and MR fluids [11-13]. In this case, the cut-off radius 

considered in the computation of the magnetic interactions between particles seems to affect the 

period and thickness of the layers. 

Interestingly, in most of the previous publications, highspeed cameras are not used and patterns are 

not visualized directly under shear but at the end of the test once the sample is removed from the 

rheometer, e.g. [14]. Typically, suspensions are prepared in paraffin wax and start-up experiments run 

at a temperature well above the melting point of the wax. Then, the rotation is stopped, and the 

sample allowed to cool down for the wax to solidify. Finally, the sample is removed from the rheometer 

and visualized under a microscope. For the first time, in this manuscript, we carry out high-speed 

videomicroscopy observations in synchronization with acquisition of rheological data of carbonyl iron 

based 𝑀𝑅 fluids subjected to simple shear flows and large Mn under the presence of uniaxial 𝐷𝐶 fields. 

High-speed imaging is needed for the structures to be frozen at large Mn. Also, start-up (unsteady) 

tests are investigated as a first step towards the full understanding of these materials under a steady 

shear kinematics. The obtained time-resolved images are carefully analyzed to get quantitative 

morphological information of the formed layers: number, mean width, percentage of occupation and 

mean period. The experimental results are discussed in terms of energy minimization arguments. 

 

2. Materials and methods 

𝑀𝑅 fluids used in this work were prepared by dispersion of carbonyl iron microparticles in glycerol. A 

particle volume fraction of 10 vol% was used; field-induced structures were too weak for smaller 

concentrations while the suspensions were too dark for visualization at larger concentrations. The 



microparticles were provided by BASF SE (Germany). They were grade EW with a typical diameter of 3 

𝜇m and a density of 7.86 g cm-3. Glycerol (86%-88%, 1.232 g cm-3, 106 mPa s at 25 °C) was purchased 

from Scharlau (Spain). 

Rheological experiments were carried out in a MCR 501 stress-controlled torsional rheometer (Anton 

Paar, Austria), using a plate-plate configuration. The gap between the plates was fixed at 300 𝜇m. The 

upper plate was made of titanium (radius 𝑅 = 10 mm) and its surface was sandblasted to minimize 

wall slip. The bottom plate consisted of a transparent smooth glass. Experiments were performed at 

room temperature (~25° C) and the magnetic field was generated in the velocity gradient direction 

using an open coil surrounding the sample. 

Just before each measurement, samples were prepared and thoroughly dispersed using a vortex mixer 

(3000 rpm, 30 s) and an ultrasonic bath (30 s). Then, 0.1 ml of the 𝑀𝑅 fluid was injected by a 

micropipette on top of the glass plate, and the upper plate was displaced downwards to confine the 

𝑀𝑅 fluid at the desired gap. The measurement protocol was as follows. First, a preshear was applied 

at a constant shear rate of 100 s-1 during 60 s. Then, the preshear stopped and a magnetic field of 10.81 

kA m-1 was suddenly applied during 60 s to structure the suspension. Finally, a start-up test was 

initiated imposing a constant shear rate, still in the presence of the magnetic field. During the last 

interval, the shear stress was monitored as a function of time while images were recorded. The number 

of acquired data points was 120, and they were taken in logarithmically distributed time intervals from 

0.1 s to 10 s to better resolve the short time response. With this, each test took 261 s in total. 

Experiments were repeated at least three times with fresh new samples. 

Video-microscopy observations were carried out through the glass bottom plate using a high-speed 

camera FASTCAM Mini UX50 (Photron, Japan) with a 1.3-Megapixel complementary metal-oxide-

semiconductor (CMOS) sensor, coupled to an optical system composed by a Navitar 1-60123 6.5 x 

Zoom with a 1-6218 1.0 x Standard Adapter. In this work, the sample was homogeneously illuminated 

using a LED ring GX-860 with 61 mm diameter. The dark-field illumination provided by this ring 

facilitated the visualization of the particle structures by increasing the exposure of their surface in 

contact with the bottom glass and making them brighter than the surface of the upper plate. The 

shutter of the camera was set to 1/125 s. This was sufficiently fast to freeze the layers at the largest 

investigated shear rates and sufficiently slow to get pictures clear enough to properly detect and 

analyze the layers with a custom-built image analysis software. Both a dark-field illumination and a fast 

shutter speed were critical to get high-quality video-microscopy data in flowing 𝑀𝑅 fluids. 

Image capture and rheological data acquisition were synchronized using two analog outputs of the 

rheometer, one for the trigger of the camera to indicate when the experiment started and the other 

for the synchronization signal that indicated to the camera when to take pictures. Figure 1 shows the 

schematics of the setup used in this work. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Schematics of the experimental setup for magnetorheology and high-speed video-microscopy. The 𝑀𝑅 fluid is 

confined between two plates in a torsional rheometer. The magnetic field is generated using an open coil. Images are 

obtained through the bottom glass plate. 

 

3. Image analysis 

Figure 2 shows a typical raw image with a dimension of 1280 × 1024 pixels corresponding to the 

layered pattern observed in an 𝑀𝑅 fluid subjected to superimposed shear and magnetic fields. Due to 

the dark-field illumination, dark regions in figure 2 correspond to particle depleted areas while light 

regions correspond to particle rich areas. As observed, the iron microparticles arrange in concentric 

circular layers, around the geometric center, oriented in the flow field direction. The employed setup 

and magnification are such that a single frame provides information about the layer formation along 

the complete radius of the plate (approximately 1.5×). Before each experiment, a precision calibration 

target was placed in the sample position to calibrate the pixel size. A homemade Matlab script was 

written to perform the calibration and to automatically analyze all the images obtained in the 

experiments. 

Next, the image processing method is explained using the image shown in figure 2. As a first step, the 

obtained red, green and blue (𝑅𝐺𝐵) images are converted to grayscale images. The picture that is 

shown in figure 2 already looks like a grayscale image, but it is truly an 𝑅𝐺𝐵 file so that not too much 

information is lost in its conversion to an intensity image. Note that an 𝑅𝐺𝐵 file is treated as an 𝑀 ×

 𝑁 × 3 matrix while a grayscale image has a dimension 𝑀 × 𝑁 with intensity values from 0 to 255. 

After grayscale conversion, the script computes the complement of the images with the aim of 

matching the color of the particle layers in the image to the real blackish color of the particles. In this 

process each pixel value is subtracted from the maximum pixel value supported by the class, and the 

difference is used as the pixel value in the output image. In the output image, dark areas become 

lighter and light areas become darker. After this process, the dark regions will now correspond to areas 

rich in particles. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Concentric layers formed in a plate-plate configuration when a magnetic field is applied in the velocity gradient 

direction. Particle concentration 𝜙 = 10 vol%. External magnetic field strength 𝐻 = 10.81 kA m-1. Rim shear rate γ˙R = 300 

s-1. 

 

The next step consists in sharpening the layers in the picture to facilitate their detection using the 

unsharp masking method [15]. Generally speaking, in this technique a fraction of the blurred version 

of the image is added to itself to form the improved version. It improves the spatial resolution by 

sharpening object boundaries at the cost of image noise. In practice, this filter depends on two 

parameters: the standard deviation of Gaussian lowpass filter and the strength of sharpening effect. 

The employed values for them (15 for both) were chosen among 400 combinations looking for those 

values providing the best output when the filter is applied to a converted grayscale image. Figure 3(a) 

shows the result of applying the unsharp masking method to figure 2. Because of the high values of 

the parameters chosen for the filter, figure 3(a) already looks like a black and white image, which is 

required to compute the metrics during the layer formation process, but it is still a grayscale image. To 

convert it to a pure black and white image the Otsu’s method is used [16]. This method computes a 

global threshold by maximizing the between-class variance of the segmented classes. This threshold is 

used to convert the intensity image to a binary image. Figure 3(b) shows the final black and white 

image after applying Otsu’s method to figure 3(a). 



Figure 3. (a) Result of the application of the unsharp masking method to figure 2 to improve the 

spatial resolution of the original image. (b) Binary image obtained from figure (a) after the 

application of Otsu’s method. The bar size is 1 mm. 

Figure 4. Transformation of figure 3(b) from Cartesian coordinates (a) to polar coordinates (b). The concentric layers 

transform into vertical straight layers after the process. The origin of coordinates is fixed in the center of the cylindrical 

pattern. The bar size is 1 mm. 

 

Metrics of interest in this work are the number of layers, their mean width, the percentage of 

occupation along the radius of the geometry and the mean period of the pattern. In their computation, 

we take advantage of the cylindrical symmetry in the pictures. Images are transformed to polar 

coordinates fixing the origin at the geometric center of the pattern and associating a new coordinate 

(𝑝, 𝜃) to each pixel (𝑥, 𝑦) of the image. The new coordinates must also be placed into a square matrix 

to work with them. Thus, the script interpolates a surface with a dimension equal to the range of 𝑝 and 

0 at the query points specified by the polar coordinates using a triangulation-based natural neighbor 

method. From a computational point of view this is the most expensive step in the image analysis 

process. The transformation from Cartesian to polar images is shown in figure 4. As observed, the 

circular layers become a vertical stripe pattern. However, some defects appear in the image as well. 

Firstly, there is a black region that corresponds to an area without information. Secondly, there is a 



gray region generated by the extrapolation of the pixel at the edge of the Cartesian picture. Finally, in 

the layered pattern some lobes appear whose shape only depends on the place (with respect to the 

Cartesian image center) where the origin of the coordinate reference system is defined. 

The objective now is to average the image intensity in the 𝜃 component collapsing the picture in a 

single (radial) section that informs about the layer distribution and morphology along the geometry 

radius. Previously, it is necessary to find a mechanism in order not to consider the defects of the polar 

image. The solution for this problem is to create a mask from the polar image to avoid the spurious 

areas. As we can see in figure 4, the white layers (corresponding to particle depleted areas) are a 

unique characteristic in this picture. Hence, applying a closing morphological operation with a 250-

pixel square structural element (which is suitable for the typical width of the layers found in our 

images), a dilatation effect of the white pixel in the horizontal direction is achieved. Later, we can 

delete all the pixels that are not white, generating the mask needed to get rid of the mentioned 

defects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Mask generated from the polar image in figure 4(b) using a closing morphological operation. The bar size for the 

horizontal direction is 1 mm. 

 

Figure 5 shows the mask obtained for our sample image. It is important to comment that it is not 

necessary to generate a mask for each image because the shape of the spurious area generated in the 

interpolation process does not change during an experiment. As a result, the same mask can be used 

for all pictures of a given experiment. 

Now, it is possible to calculate the average in 6, but only considering the part of the polar image with 

layer information, by overlapping the polar image with its mask. This process generates the masked 

polar image that is shown in figure 6(a). Here the disregarded area for the average of the 6 component 



has been painted gray color. In figure 6(b) it is shown the radial section result of the average of the 

layered area represented as a row grayscale image. Ideally, if the layers in figure 6(a) were perfectly 

vertical, the results of the average would be binary (black or white depending on there is or not a 

layer). Nevertheless, there are pixel columns of the masked polar image that have both black and white 

pixels. This is so because the layers in the original image are not perfectly round nor/or concentric. So, 

after the averaging process, it is necessary to do another binary conversion of the mean radial section. 

In this case, the threshold used for the binarization is half of the range of the class (125). The resultant 

radial section image is shown in figure 6(c) and its pixel value profile can be seen in figure 7(a). Note 

that the second binarization is useful to clearly delineate the layer edges but it can also introduce some 

artifacts. For example, if the radial section does not contain the layer pattern but a homogeneous 

intensity profile, any small variation above/below the threshold value of 125 will be directly translated 

to a white/black pixel and hence understood as the absence/presence of a layer (even though the 

original profile does not contain any of them). 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. In order not to average the defects generated by the interpolation process, the polar image is masked. (a) Masked 

polar image. (b) Mean radial section from d-component average. (c) Binarization of the mean radial section. The bar size for 

the horizontal direction is 1 mm. 

 

Once the binary radial section is generated (see figure 6(c)) the aforementioned metrics can be 

calculated from it. The first one is the number of layers, computed by identifying as a layer each group 

of contiguous black pixels (regardless the group width). The second metric is the mean width of the 

layers. This corresponds to the average number of pixels of all identified groups. The third metric is the 

percentage of occupation. It represents the ratio between the number of black pixels and the total 

number of pixels in the binary mean radial section. This metric can be calculated also from the black 

and white Cartesian image (i.e. before polar coordinates transformation, masking, 𝜃-average and 

second binarization) and, hence, it can be used as a reference to verify whether the image treatment 

from figures 3(b) to 6(c) introduces severe artifacts or not. As it can be seen in figure S1 of the 



supplementary material, the percentage of occupation computed from both kinds of images shows no 

significant differences indicating that the employed image processing method is not distorting the 

information contained in the original pictures. The fourth and last metric is the mean period of the 

layered pattern. This is computed using the fast Fourier transform (𝐹𝐹𝑇) [17]. The black line in figure 

7(b) corresponds to the modulus of the FFT obtained for the binary average of our sample image (figure 

7(a)). 

Figure 7 (a) Intensity profile of the binary mean radial section of figure 6(c). (b) Fast Fourier transform and determination of 

the mean period. 

 

The red line in figure 7(b) is the result of applying a third-order one-dimensional median filter to the 

𝐹𝐹𝑇 module. The maximum of this signal is selected as the average harmonic which provides the mean 

spatial frequency and therefore the mean period of the layered pattern. At this point it is worth to 

note that the 𝐹𝐹𝑇 computation was double-checked computing the autocorrelation of the binary 

mean radial section (see figure S2). Both methods yield similar results. 

In practice, as stated above, we are interested in exploring microstructural changes with time under a 

prescribed flow kinematics (i.e. a start-up test). This requires capturing many pictures, like that shown 

in figure 2, and processing them. In this sense, the software can also construct summary images by 

concatenating the mean radial sections (figure 6(c)) of the consecutive pictures taken during a test. An 

example can be found in figure 8. The upper panel of figure 8 describes the start-up kinematics (a 

constant rim shear rate of 𝛾˙ / 𝑅 = 400 s-1). The second panel shows the shear stress generated by the 

𝑀𝑅 fluid at the rim of the plate (𝜏R). Finally, the bottom panel of figure 8 shows the summary image 

obtained by concatenation of radial sections. Note that the mean radial sections have been cropped 



previously at 9.8 mm to avoid the noticeable compression and dilatation effect of the sample in the 

radial direction, produced in the rim of the geometry by its eccentricity. Also, the width of each mean 

radial section has been properly adapted to fit the logarithmic distribution of the data points taken by 

the rheometer. 

 

4. Theoretical model 

In order to theoretically predict the period of the pattern, 𝑑, an energy minimization model proposed 

by Cutillas et al [6, 7] is used. This model assumes that the particles (radius a) are arranged into layers 

with a given internal volume fraction, 𝜙a, that expand the whole shearing gap ℎ. The model assumes 

that hydrodynamic forces play a secondary role allowing the particles to reach minimum energy states 

but not breaking the structures formed under the magnetic field. Thus, by simply minimizing the 

magnetostatic energy of the pattern it is possible to find the equilibrium pattern period. Two 

ingredients are considered for the magnetic energy computation: volumetric and surface contributions 

[7, 18]. 

Volumetric energy simply comes from the magnetization 𝑀⃗⃗  acquired by the layers when the pattern 

is exposed to an external magnetic field 𝐻⃗⃗ . Supposing that magnetic particles are linear, with relative 

permeability 𝜇pr, and that each layer is homogeneously magnetized, the volumetric energy per unit 

volume is given by: 

 

 

 

 



 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Rim shear rate γ.
R, shear stress tr and microstructural evolution (summary image) as a function of time t during a 

start-up test. Particle concentration 𝜙 = 10 vol%. External magnetic field strength 𝐻 = 10.81 kA m-1. Rim shear rate γ.
R = 

400 s-1. 

 

where 𝜇0 is the vacuum permeability, 𝜑 = 𝜙/𝜙a is the apparent volume fraction of the layers, 𝜙 is the 

particle volume fraction, 𝛽 is the contrast factor 𝛽 = (𝜇pr — 𝜇cr) / (𝜇pr + 2𝜇cr), 𝜇cr is the carrier relative 

permeability and 𝐷 is the pattern demagnetization factor. The latter only depends on the layer 



geometrical parameters, 𝜑 and 𝑑* =  𝑑/ℎ, and accounts for the perturbation on the external field due 

to the layer magnetization. The demagnetization factor reads as follows: 

 

 

 

 

Surface energy effects appear due to the weaker local field experienced by the particles at the layer 

surface in comparison to particles within the bulk of the layer. Based on a mean-field computation, 

the difference between those fields is 𝐻V — 𝐻s =  𝑀/6𝜇0. If it is supposed that only particles at the 

external surface of the layer are exposed to 𝐻s, the surface energy per unit volume can be written in 

terms of the layer bulk magnetization 𝑀 as: 

 

 

 

Supposing that the apparent volume fraction of the layers does not depend on the period and imposing 

the condition for minima to the total magnetic energy 𝜗 (𝜇V + 𝑢S) /𝜗𝑑|ϕ = 0, the following equation 

for the pattern period is obtained: 

 

 

 

5. Rheomicroscopy 

Rheological experiments described in this manuscript consist in start-up tests in the classical plate-

plate configuration. Under this particular kinematics, a constant rim shear rate is applied and the 

resulting stress is measured as a function of time. An example is shown in figure 8 for a rim shear 

rate of γ.
R  = 400 s-1. 

As observed in figure 8, the stress initially shows a high scattering in the data and then, at a given time 

(𝑡 ~ 10 s), levels off at a constant steady value. This behavior is in very good qualitative agreement 

with experiments on 𝐸𝑅 fluids by Vieira et al [19]. The stabilization of the stress is clearly concurrent 

with the formation of a steady pattern along the plate radius. The sole exception is the appearance of 

unstable layers in the proximity of the rim (𝜌 ~ 8.5 — 9.8 mm) due to the slight and unavoidable 

eccentricity and misalignment of the geometries there. As shown in the bottom panel of figure 8, the 

layers form essentially at the same time (𝑡 ~ 10 s) over the whole surface. 

A priori, there are three plausible explanations for the high scattering in the transitory regime: short 

data acquisition time (i.e. logarithmic duration time from 0.1 s to 10 s), sample specificities (i.e. layer 

formation/destruction) and a combination of both. To clarify the reason for such a large scattering we 

also carried out start-up tests with a silicone oil (not containing particles) exhibiting a comparable 

stress response as the MR fluid under similar conditions to those reported in figure 8. The stress curve 

for the oil (figure S3) was also noisy up to 10 s but the standard deviation of this interval is a little bit 

lower than the 𝑀𝑅 fluid: 5.6 Pa for the oil vs. 8.5 Pa for the MR fluid. As a result, the large scattering 



at short times seems to be mainly due to the short acquisition time of the rheometer at the beginning 

of the experiment, but the sample specificities are also involved. 

As shown in figure 8, a random sequence of tiny black stripes appears in the transitory regime. These 

stripes are indeed noise. At these initial stages, the microstructure actually consists of chain-like 

aggregates in the field direction that are homogeneously distributed over the sample (the shear flow 

does not have time to reorganize them). Hence, the radial section obtained from the polar component 

average is homogeneous as well (with an intensity value close to 125) and it does not show any pattern. 

As mentioned previously, the binarization of this kind of radial sections has an associated error that 

produces ‘false’ layer identification and, consequently, the observable random sequence of tiny 

stripes. Of course, when computing the metrics, these radial sections obtained during the transitory 

regime are not considered. 

Figure S4a shows stress versus time curves in start-up tests for a range of rim shear rates in the interval 

γ.
R  ∈ [100, 500] s-1. The associated stress vs. time curves are qualitatively similar to figure 8 no matter 

the applied shear rate value. Figure S4(b) shows the corresponding summary images. Interestingly, for 

the explored shearing time (261 s), stable layers do not form if 𝛾˙/𝑅 > 300 s-1. Contrarily, for 𝛾˙𝑅 ⩾ 

300 s-1 well-defined stable layers appear. Again, a clear correlation is found between the stress 

stabilization and the appearance of the layers. 

Additional experiments were carried out to interrogate the influence of shearing time at the lowest 

investigated shear rates where stable layers did not form. Figure S5 compares the results for three 

different rim shear rates (100 s-1, 200 s-1 and 400 s-1) in experiments with a duration time of 1290 s. 

The summary pictures shown in figure S5 demonstrate that formed layers at lowest shear rate are not 

stable but appear and disappear during the test. These experiments suggest that the formation of the 

layers does not depend only on the shearing time, but it also depends on the relative importance of 

the hydrodynamic forces over magnetostatic ones. 

The ratio between the hydrodynamic drag force and the magnetic interparticle force triggered by the 

magnetic field is commonly known as the Mason number, Mn. In the linear magnetostatic regime and 

using the Stokes drag approximation, it can be written as 𝑀𝑛 = 8𝜂𝛾˙/ (𝜇0𝜇cr𝛽2𝐻2), where 𝜂 is the 

carrier fluid viscosity and 7 the imposed shear rate. With this in mind, layers are expected to appear 

only when Mn is above a critical value, 𝑀𝑛c ~ 1. This corresponds to a critical shear rate capable to 

disrupt a doublet of particles formed by the magnetic field [8]. Under the dipolar approximation the 

critical Mason number is 𝑀𝑛c = 0.938 and hence the critical shear rate would be 𝛾˙ c = 66.2 s-1. This is 

clearly a far too low shear rate for layer formation in view of the experimental results shown in figure 

S4 that suggest a critical shear rate of approximately 300 s-1. 

A more precise estimation of the critical shear rate requires the inclusion of multipolar contributions 

in the magnetostatic interactions [20]. In this case, the critical Mason number reads as follows [8]: 

 

 

 

 

Here 𝑓II, 𝑓⊥ and fr are dimensionless functions accounting for the effects of multipoles over the dipolar 

interaction. These functions depend on the interparticle distance and the contrast factor 𝛽. For an 

interparticle distance equal to the particle diameter and the external magnetic field employed in this 



work, 𝐻 = 10.81 kA m-1, one obtains 𝛽 = 0.64 and hence, 𝑓II = 4.56, 𝑓⊥ = 0.70 and 𝑓r = 1.31 (values 

interpolated from [21]). With this, the critical Mason number provided by equation (5) becomes 𝑀𝑛c 

= 2.47 and the corresponding critical shear rate 𝛾˙c = 175 s-1. The latter is still smaller than the 

experimental one. 

In order to compare with the experiments, it should be borne in mind that the shear rate in a plate-

plate configuration is not homogeneous. On the contrary, it increases linearly along the plate radius 𝛾˙ 

(𝜌) = 𝛾˙𝑅𝜌/𝑅, being 𝑅 the plate radius and 𝛾˙𝑅 the rim shear rate. Thus, for a rim shear rate of 𝛾˙𝑅 = 

200 s-1, only 25% of the sample is really sheared with a shear rate larger than the critical one. This could 

explain why at this shear rate the layer pattern shown in figure S5 is not completely stable in time. To 

take the radial profile of the shear rate into consideration, the previous computation of the critical 

shear rate can be done in terms of the effective (mean) shear rate 𝛾˙ experienced by the sample in the 

plate-plate configuration. Such approximation has been done previously in the literature to evaluate 

the effect of nonhomogeneous magnetic field profiles [22]. In this case, since the shear rate profile is 

linear, its mean value is one half of the rim shear rate, 𝛾˙ = 𝛾˙ 𝑅/2. Therefore, only for rim shear rates 

above 2 × 175 s-1 (𝛾˙𝑅 ~ 300 s-1 as seen experimentally) layers are expected. Besides, note that 

approximating the true shear rate in the sample by its mean value is also supported by the fact that 

layers appear along the radial section all at once (see figure 8). 

Experiments for 300 s-1, 400 s-1 and 500 s-1 were analyzed for layer formation using the image analysis 

software. Figure 9 shows the number of layers (a), mean layer width (b), percentage of occupation (c) 

and mean period of the pattern (d) during the start-up tests. Generally speaking, all those metrics 

consistently share the same features, they do not depend strongly on the shear rate, are constant 

throughout the experiment (thus, layers do not merge/split or coarsen) and are sensitive to the pattern 

reconfiguration (notice, especially the case of 300 s-1 at approximately 100 s, the larger error bars of 

figure 9 and the pattern instability-stress drop of figure S4). The available literature for these metrics 

is scarce and even contradictory. On the one hand, Volkova et al [9] mention that the pattern period 

does not depend on the shear rate. On the other hand, experiments on 𝐸𝑅 fluids by Vieira et al [23] 

point that the number and thickness of the layers increase with the shear rate (hence, the period 

should decrease). Those differences could be due to the different nature of 𝐸𝑅 fluids (where 

demagnetization fields are absent) and experimental time scales (experiments in this work take around 

5 min while in Vieira et al [23] they took at least 1 h) what could give rise to other artifacts like 

electrophoresis, evaporation or sedimentation. 

Finally, supposing that the percentage of occupation area shown in figure 9(c) is constant through the 

sheared sample (what can be a rough approximation), one can identify it with the apparent volume 

fraction of the layers, thus, 𝜑 = 0.4. Using this value together with the experimental shearing gap ℎ = 

300 pm and the particle radius 𝑎 = 1.5 𝜇m, equation (4) can be solved numerically to obtain a predicted 

period of 𝑑 = 140 pm. As it can be seen, this is comparable to the experimental one shown in figure 

9(d). Such a good agreement is definitely surprising, and may be fortuitous, taking into consideration 

the assumed approximations and more investigation is needed in this sense. In particular, future work 

should be focused in the influence of gap size in the generated structures. 

  



Figure 9. Temporal evolution of the metrics during a start-up test at different rim shear rates. Error bars correspond to the 

standard deviation of at least three different repetitions. Particle concentration 𝜙 = 10 vol%. External magnetic field 

strength 𝐻 = 10.81 kA m-1 (a) Number of layers, (b) mean width, (c) percentage of occupation and (d) mean period. 

 

In good agreement with the model prediction, the magnetic field strength did not influence the metrics 

of the layered pattern with differences of the order of the experimental uncertainty. In table 1 we 

show the results for a shear rate of 300 s-1 at a range of magnetic field strengths (from 5.35 to 10.81 

kA m-1). As expected, no matter the magnetic field strength, the metrics are very similar because 𝑀𝑛 

> 𝑀𝑛c. 

Finally, in order to evaluate the on-off response of the material and the layered pattern evolution we 

designed the following experiment. The sample was placed in the rheometer and the gap closed. No 

preshear was applied. The shear rate was immediately fixed at 400 s-1 and held for a total time of 600 

s. During the shearing process, a magnetic field was superimposed for 1 min and removed for another 

1 min. The earlier sequence was repeated for a number of predetermined magnetic field values 

(5.35,8.08,10.81,13.53 and 16.26 kAm-1). The shear stress was measured continuously during the 

procedure similarly to Ulicny et al [24]. Results are shown in figure 10. 

 



Only for sufficiently small magnetic field strengths (𝑀𝑛 > 𝑀𝑛c) a stable layered pattern formed while 

for larger field strengths the layers were visible but not stable. Layers disappeared in the off periods 

(i.e. in the absence of magnetic field). No matter the magnetic field strength, the stress rapidly changed 

during the off-on and on-off transitions exhibiting a very short relaxation time. 

These observations are in good agreement with Volkova et al [8] but in clear contradiction with 

experiments by Kittipoomwong et al [25]. In the latter case, the torque increased rapidly (slowly) to a 

steady-state value for 𝑀𝑛 > 𝑀𝑛c (𝑀𝑛 <  𝑀𝑛c). Layers observed by Kittipoomwong only became 

apparent during the stress transient when 𝑀𝑛 <  𝑀𝑛c. 

 

Table 1. Characteristics of the layered structures for different magnetic fields. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Shear stress as a function of time showing the on-off and off-on behavior of the 𝑀𝑅 fluid. Photographs 

correspond to the stable layers observed during the on periods for 𝑀𝑛 >  𝑀𝑛c. Results of three different experiments on 

fresh new samples are shown to judge on the reproducibility in the measurements. Particle concentration 𝑓 = 10 vol%. 

External magnetic field strength 𝐻 = 10.81 kA m-1. Rim shear rate 𝛾˙ 𝑅 = 400 s-1. 



6. Conclusions 

Sheared 𝑀𝑅 fluids under uniaxial 𝐷𝐶 magnetic fields exhibit the formation of concentric cylindrical 

layers for shear rates above a critical one. A good correlation is found between stress stabilization and 

layer formation as demonstrated by the summary image generated by our image analysis software. 

The critical shear rate is found to be dictated by the magnetostatic interactions between the particles 

and hydrodynamic drag through the Mason number. The geometrical properties of the pattern 

(number of layers, mean width, percentage of occupation and mean period of the structures) do not 

depend on the shear rate. A reasonably good agreement is found between the experimental mean 

period and the theoretical model by Cutillas et al [7]. 

Future work may focus both in fundamental and applied research. From a fundamental point of view 

it is still under debate whether chain or layered models are applicable in sheared 𝑀𝑅 fluids. As a result, 

a mechanistic explanation behind their shear thinning behavior is still not clear. This manuscript clearly 

shows that particles are not randomly distributed in the suspension but instead rearrange to form 

layers for sufficiently large Mason numbers. 

From a more practical point of view, the current manuscript sheds light on the kinematic conditions 

required for the layers to form. Efforts may be directed in tailoring layer formation to develop more 

advanced 𝑀𝑅 fluids of interest in rapidly evolving applications such as the patterning of cells in 

anisotropic 2D magnetic scaffolds for tissue engineering. 
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