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a b s t r a c t

This article deals with the calculation of all robustly relatively stabilizing (or robustly stabilizing
as a special case) Proportional–Integral–Derivative (PID) controllers for Linear Time-Invariant (LTI)
systems with unstructured uncertainty. The presented method is based on plotting the envelope
that corresponds to the trios of P–I–D parameters marginally complying with given robust stability
or robust relative stability condition formulated by means of the H∞ norm. Thus, this approach
enables obtaining the region of robustly stabilizing or robustly relatively stabilizing controllers in
a P–I–D space. The applicability of the technique is demonstrated in the illustrative examples, in
which the regions of robustly stabilizing and robustly relatively stabilizing PID controllers are obtained
for a controlled plant model with unstructured multiplicative uncertainty and unstructured additive
uncertainty. Moreover, the method is also verified on the real laboratory model of a hot-air tunnel,
for which two representative controllers from the robust relative stability region are selected and
implemented.

© 2022 ISA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Despite the existence of a wide variety of sophisticated con-
rol approaches, the Proportional–Integral–Derivative (PID) con-
rollers still play a fundamental role in a great majority of real
ontrol engineering applications even nowadays [1–3]. The un-
hakeable position of PID controllers was also confirmed by
he survey published in the IEEE Control Systems Magazine in
017 [4], where industry-aware control experts were asked about
heir perceptions of the industry impact/success of a dozen of
dvanced control technologies. The PID control was also in-
luded for calibration purposes [4]; however, quite surprisingly
or actually not?), it routed all advanced approaches, as the
xperts unanimously ranked the PID control at the top of control
echnologies having high industry impact. Therefore, it is still
orth researching the PID-based control loops, especially from
he viewpoint of their robustness [4–7], in order to make these
imple and easily implementable control algorithms applicable to
ystems under various conditions of uncertainty.
Remind that linear robust control methods usually start from

n uncertain Linear Time-Invariant (LTI) model of the controlled
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plant. The uncertainty, which is incorporated into the model,
can be considered as a cost for keeping the relative simplicity
of an LTI model even for the systems with much more com-
plicated (even nonlinear) behavior, the imprecise physical prop-
erties knowledge, or the parameters (‘‘slowly’’) depending on
changing conditions.

There are three principal approaches to modeling the uncer-
tainty for the purpose of robust control, namely parametric un-
certainty [8–11], unstructured uncertainty [9,12–16], and Linear
Fractional Transformation (LFT) [13,17–20].

The first, and probably the most natural and comprehensible,
approach uses so-called parametric uncertainty [8–11]. The con-
struction of the models with parametric uncertainty works on
the assumption that the structure of the system, i.e., its order,
is fixed and known, but the real physical parameters are known
only imprecisely. Most frequently, the uncertain parameters are
bounded by the real intervals, but other types of bounds are also
possible. Moreover, the systems with parametric uncertainty may
have various uncertainty structures, which specify their complex-
ity. However, as stated in [21], sometimes it is not possible or
practical to represent the uncertainty by means of the parametric
approach, and thus other models may be utilized.

The second mentioned description, based on the unstructured
ely stabilizing PID controllers for linear time-invariant systems with unstructured

uncertainty, uses the restriction of the spread of the frequency
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haracteristics. Thanks to this, it does not even need, contrary to
he parametric uncertainty, any knowledge of the system struc-
ure. There are several types of unstructured uncertainty avail-
ble, as will be named in the following Section 2 [9,12–16].
Finally, a general control configuration that leads to the de-

cription of a control system by means of LFT represents the third
ption. This universal approach allows the formulation of many
inear control problems using an array of methods (e.g., Linear
uadratic Gaussian (LQG), H2, H∞ or µ control), and it is espe-
ially advantageous for Multiple-Input Multiple-Output (MIMO)
ystems [13,17–20].
This paper utilizes the models with the unstructured uncer-

ainty, as a favorable compromise among description simplicity,
bility to cover even the systems with unknown structure (order),
nd the efficacy for control design methods, especially for Single-
nput Single-Output (SISO) systems. Therefore, the key motivation
or utilizing the unstructured uncertainty approach in modeling
he uncertainty can be seen in a possibility to include not only
arameter variations but also various unmodeled dynamics in-
luding nonlinear, high-order, or other complex behavior into
relatively simple uncertainty model that is combined with a
ominal LTI model. Nevertheless, in the illustrative examples, the
odels with unstructured uncertainty are constructed just on

he basis of the original models with parametric uncertainty be-
ause of simplicity. Besides, the unstructured uncertainty models
re advantageous for H∞ norm-based control design techniques.
comparison of the (fractional-order) models with paramet-

ic uncertainty, unstructured multiplicative uncertainty, and un-
tructured additive uncertainty, as well as the corresponding
pproaches to the robust stability investigation, were presented
n [22].

Many applications of robust control approaches, especially
hose based on the H∞ tools, using models with unstructured
ncertainty can be found in the literature. For example, [23]
resented a synthesis of a robust controller via a pole placement
ethod and H∞ metrics, and it utilized the technique for control
f a servomechanism, modeled by means of the unstructured
ncertainty. Recently, [24] solved a robust control synthesis for
ave energy converters under unstructured uncertainty as an
QG problem with an associated H∞ constraint. Further, [25]
pplied a methodology using H∞ optimization, Linear Matrix
nequalities (LMIs), and unstructured uncertainty to design robust
ontrollers for a two-input two-output temperature system.
However, the application of H∞ norm-based techniques in

ontrol synthesis usually leads to high-order and thus imprac-
ical controllers [21]. Despite the efforts to put constraints on
he order of H∞ controllers [26–28], many of these methods
represent relatively difficult computational problems. Due to the
extreme popularity and extensive use of PID controllers, several
works naturally focused on synthesizing H∞ PID controllers. For
example, [29] presented a design of H∞ PID controllers based
on a generalization of the Hermite–Biehler Theorem and linear
programming. Then, the use of H∞ approximation for the online
adaptation of PID controller parameters was discussed in [30].
More recently, [31] offered a constructive determination of the
set of stabilizing PI and PID controllers attaining an H∞ norm
bound on the error transfer function and developed a relationship
between this H∞ norm specification and guaranteed classical gain
and phase margins.

It is understandable that an array of researchers have focused
on the robustness of these conventional PID (and PI as a special
case) control loops also specifically under unstructured uncer-
tainty. For example, the idea of plotting the contour graph of
H∞ norm of weighted complementary sensitivity for robustly
stabilizing PI controllers and plants with unstructured uncer-

tainty was shown in [14]. Subsequently, the same model of a

2

paper bleaching process as in [14] was also used in [16] for the
purpose of the comparison of parametric uncertainty-based and
unstructured uncertainty-based approaches to uncertainty mod-
eling and robust stability analysis. Moreover, the idea from [14]
was applied to finding the robustly stabilizing PI controllers via
plotting the boundary contour in a P-I plane for systems with
unstructured multiplicative [32] or unstructured additive [33]
uncertainty. Then, an analytically based procedure for designing
low-order controllers that satisfy frequency-dependent sensitiv-
ity specifications for SISO plants with unstructured uncertainty
was presented in [34]. A small gain theorem-based technique
for designing robust PI/PID controllers for systems described by
the unstructured uncertainty model was discussed in [35] and
afterward in [36]. A computationally favorable method for calcu-
lation of all H∞ robustly stabilizing P controllers (gains) for SISO
LTI systems affected by unstructured multiplicative uncertainty
was proposed in [21]. Later, a method, based on the system’s
frequency response, for finding all PID controllers satisfying a
robust performance constraint for a given SISO transfer function
with time delay was introduced in [37]. Further, the paper [38]
provided a set of simulation results for robust PID control of a hy-
draulic system with unstructured uncertainty. Recently, in [39], a
robust PI controller was designed for a textile-reinforced compos-
ite integrated with shape memory actuators, modeled by means
of an unstructured uncertainty approach.

Besides the unstructured uncertainties, the design of conven-
tional PI or PID controllers for plants with parametric uncertainty
represents its own popular and frequently researched field with
many interesting works, which will not be cited here. The inter-
ested reader can find a relevant literature review in [40]. How-
ever, even for the purposes of this paper, it is worth mentioning at
least several H∞-based methods, such as these presented in [41–
43]. Furthermore, a mixture of structured and unstructured un-
certainties was discussed, e.g., in [44,45] for PID controllers, and
in [46,47] for more general higher-order controllers.

Some works extended the concept of (absolute) stability to
relative stability [48–51], which also gives a certain degree of
stability, i.e., it says how close the system is to instability. Since
the shifted half-plane ensures a specified settling time of the
response [51], the relative stability can be considered as a tool
for obtaining some level of performance as well. Moreover, the
relative stability can be further extended to so-called robust
relative stability [52–54] in the same way as from the (absolute)
stability to the robust stability. Thus, it means that the prescribed
relative stability has to be ensured not only for a nominal plant
but for all possible members of an uncertain family, so even for
the worst case.

This paper aims at the calculation of all robustly stabilizing
or robustly relatively stabilizing PID controllers for LTI systems
with unstructured uncertainty. The presented graphical approach
is based on obtaining the envelope that corresponds to the trios
of P–I–D parameters that marginally fulfill given robust stability
or robust relative stability condition formulated by means of the
H∞ norm. The practical solution is done by a numerical procedure
with some given tolerance to the applied condition, and a set
of P-I contours is obtained for some sampled fixed values of D
parameters, which consequently forms the whole envelope. Thus,
this method allows calculating the region of robustly stabilizing
or robustly relatively stabilizing PID controllers in a P–I–D space.
In the previous works, the idea of finding the robust stability
area through plotting the boundary contour in a P-I plane was
used for systems with multiplicative [14,32] and additive [33]
uncertainty, but only for PI controllers and only from the robust
(absolute) stability viewpoint. On the other hand, this paper
enriches the method and presents the calculation of robustly

relatively stabilizing (or robustly stabilizing as a special case) PID
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ontrollers. In other words, the key contribution of this work
onsists in the extension of the method for PID controllers and its
eneralization for the concept of robust relative stability. In order
o show the technique’s applicability, the illustrative examples
re elaborated, in which the regions or robustly stabilizing PID
ontrollers and robustly relatively stabilizing PID controllers are
alculated for the controlled plant models with unstructured
ultiplicative or unstructured additive uncertainty. Furthermore,

he practical applicability of the technique is also demonstrated
y means of real experiments on the laboratory model of a hot-air
unnel. The process of airflow speed in this tunnel is modeled as
he system with unstructured multiplicative uncertainty, and the
egion of robustly relatively stabilizing PID controllers is obtained.
ubsequently, two representative controllers are selected from
his region and tested to control the speed of airflow in the hot-air
pparatus.
Thus, the main contribution of this paper and the benefits of

he presented method can be summarized as follows:

• A technique for calculating all robustly relatively stabiliz-
ing PID controllers with some given robust stability mar-
gin α (typically α > 1) for LTI plants with unstructured
uncertainty is introduced.

• The core of the method is based on obtaining the envelope
determined by the trios of P–I–D parameters that marginally
comply with a given robust relative stability condition for-
mulated via the H∞ norm.

• The current work represents the extension of the previous
works, where only PI controllers were considered and only
from the robust (absolute) stability viewpoint.

• Thanks to the unstructured uncertainty, the structure (or-
der) of the controlled system is needles to know, and thus
not only parameter variations but also various unmodeled
complicated dynamics may be covered in the model.

• All common types of unstructured uncertainty may be used
in the method. The choice will influence the form of the
applied robust relative stability condition.

• Robustly (absolutely) stable PID controllers can be obtained
as a special case (for α = 1) of the robustly relatively stable
PID controllers.

• In the illustrative examples, the two most frequent kinds of
unstructured uncertainty models, that is, multiplicative and
additive, are discussed.

• The practical applicability of the method is verified via the
real control experiments on the laboratory model of a hot-
air tunnel.

The remainder of this article is structured as follows. The
odels with unstructured uncertainty, their classification, and
athematical description are reminded in Section 2. Then, an
verview of (classic) robust stability conditions and (classic) ro-
ust performance conditions for systems under unstructured un-
ertainty are summarized in Sections 3 and 4, respectively. The
ain contribution of the article resides in Section 5, where an
pproach for calculating robust (namely robustly stabilizing and
obustly relatively stabilizing) controllers is presented. Further,
he specific illustrative example for a plant with unstructured
ultiplicative uncertainty is elaborated and discussed in Sec-

ion 6. Then, a similar synthesis and discussion, but for the plant
odel with unstructured additive uncertainty, is provided in
ection 7. Subsequently, the real control experiments on the
aboratory model of a hot-air tunnel are presented in Section 8.
he final Section 9 offers some concluding remarks.
3

2. Systems with unstructured uncertainty

Since the idea of robust control is based on respecting the dis-
crepancy between the actual behavior of the real-life controlled
plant and the idealized behavior of its mathematical model by
means of introducing the uncertainty into this model, the con-
struction of such models with uncertainty represents the essen-
tial task. As mentioned above, three main approaches to modeling
the uncertainty for robust control are typically utilized — para-
metric uncertainty, unstructured uncertainty, and LFT. From these
options, the unstructured uncertainty-based approach seems to
represent an advantageous trade-off between simplicity and ef-
fectiveness. Firstly, it is not necessary to know the true structure
(order) of the controlled plant. Consequently, not only parameter
changes but also various unmodeled complex dynamics may be
covered by the unstructured uncertainty model. However, sec-
ondly, the final plant model still remains simple enough (LTI), and
it is convenient for control design methods, especially those based
on H∞ techniques.

The various kinds of unstructured uncertainty models can be
further classified as follows [13]:

• Multiplicative uncertainty
• Additive uncertainty
• Inverse multiplicative uncertainty
• Inverse additive uncertainty.

Besides, the multiplicative uncertainty and the inverse multi-
plicative uncertainty may have their input and output forms for
the general case of MIMO systems. However, for SISO systems
(that are considered in this paper), the input and output forms
are equivalent.

The multiplicative uncertainty is probably the most commonly
utilized type of unstructured uncertainty in control engineering.
A possible reason can be seen in the fact that its numerical
value is more informative than in the case of additive uncer-
tainty [13]. The perturbed model GM (s) with the (input) multi-
plicative uncertainty can be described by the transfer function:

GM (s) = [1 + WM (s)∆M (s)]G0(s), (1)

where G0(s) represents a nominal model, WM (s) is a weight func-
tion (typically stable and minimum-phase one) representing un-
certainty dynamics (in other words, it expresses how the maxi-
mum uncertainty magnitude is distributed over the frequency),
and ∆M (s) means the uncertainty itself, that is, the uncertain
information on the true magnitude and phase of perturbation.
This (allowable) uncertainty is any stable function that complies
with the inequality:

∥∆M (s)∥∞ ≤ 1 ⇒ |∆M (jω)| ≤ 1 ∀ω. (2)

Alternatively, it is possible to replace the condition of the
tability of ∆M (s) by the prerequisite for the same amount of
ight-hand (unstable) poles for all members of the family, i.e., the
ame amount of right-hand poles of G0(s) and GM (s) for all ∆M (s).
evertheless, the requirement of stable ∆M (s) is preferred [13].
The diagram of the system with multiplicative uncertainty (1)

s shown in Fig. 1, where u stands for the input and y for the
utput signal of the perturbed plant.
The weight function WM (s) has to be selected to fulfill the

nequality:

GM (jω)
G0(jω)

− 1
⏐⏐⏐⏐ ≤ |WM (jω)| ∀ω, (3)

which means that WM (s) must cover the normalized perturba-
tions (relative errors) from above for all frequencies.
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Fig. 2. System with additive uncertainty (4).
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The additive uncertainty is another popular class of unstruc-
ured uncertainty models. The system with additive uncertainty
s given by:

A(s) = [1 + WA(s)∆A(s)]G0(s), (4)

where the meaning of G0(s), WA(s), and ∆M (s) is analogous as
n the previous multiplicative uncertainty case (1). A graphical
epresentation of the system with additive uncertainty can be
een in Fig. 2.
The choice of the weight function WA(s) has to be in accor-

ance with the inequality:

GA(jω) − G0(jω)| ≤ |WA(jω)| ∀ω. (5)

Please note that the multiplicative uncertainty models and the
additive uncertainty models are equivalent if [13]:

|WA(jω)| = |G0(jω)| · |WM (jω)| ∀ω. (6)

For the sake of completeness, the systems with the (input)
inverse multiplicative uncertainty and the inverse additive uncer-
tainty are defined as, respectively:

GIM (s) = [1 − WIM (s)∆IM (s)]−1 G0(s), (7)

GIA(s) = G0(s) [1 − WIA(s)∆IA(s)G0(s)]−1 . (8)

Then, Figs. 3 and 4 show the corresponding diagrams.

3. (Classic) robust stability conditions

Assume an open-loop system with the transfer function:

L (s) = C(s)G (s), (9)
0 0

4

where C(s) is a controller and G0(s) stands for a nominal plant.
Then, a sensitivity function and a complementary sensitivity func-
tion can be expressed as, respectively:

S0(s) =
1

1 + L0(s)
, (10)

0(s) =
L0(s)

1 + L0(s)
. (11)

First, consider that the controlled plant is affected by multi-
licative uncertainty. Provided that a nominal closed-loop control
ystem (i.e., for G0(s)) is stable, the corresponding perturbed
losed-loop control system is robustly stable if and only if [12,13]:

WM (s)T0(s)∥∞ < 1, (12)

hich can also be formulated as an upper bound restriction on
he complementary sensitivity function as:

T0(jω)| <
1

|WM (jω)|
∀ω. (13)

The basic condition (12) can be rewritten in the following
orm:

WM (jω)L0(jω)
1 + L0(jω)

⏐⏐⏐⏐ < 1 ∀ω ⇒ |WM (jω)L0(jω)| < |L0(jω) − (−1)| ∀ω,

(14)

which may be nicely graphically interpreted, as shown in Fig. 5.
For the sake of simplicity, Fig. 5 supposes that the Nyquist plot

of a stable (integrators are considered as stable systems here)
open-loop transfer function L0(s) is presented. Then, evidently,
Fig. 5 depicts that the nominally stable closed-loop system is
also robustly stable if and only if the critical point [−1, 0j] is
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Fig. 5. Graphical interpretation of the condition of robust stability under
multiplicative uncertainty [15].

excluded from the envelope of Nyquist curves with a radius of
|WM (jω)L0(jω)| and the center L0(jω).

The analogous robust stability conditions can also be derived
or the other types of unstructured uncertainty models. They are
s follows [12]:

WA(s)C(s)S0(s)∥∞ < 1, (15)

WIM (s)G0(s)S0(s)∥∞ < 1, (16)

WIA(s)S0(s)∥∞ < 1, (17)

nd they are valid for additive (4), inverse multiplicative (7), and
nverse additive (8) uncertainty models, respectively.
5

4. (Classic) robust performance conditions

Recall that the condition for the nominal performance of a
closed-loop system (without perturbations), expressed in terms
of weighted sensitivity, is [12,13]:

∥WP (s)S0(s)∥∞ = ∥WP (s)S(s)∥∞ < 1, (18)

here WP (s) is a (performance) weight chosen by the designer.
he condition (18) can be graphically illustrated by means of the
yquist plot of open-loop transfer function L(s) (usually stable
ne for simplicity), which must remain outside a disc of radius
WP (jω)| with the center on [−1, 0j].

Under the assumption of the perturbed plant, one may be
nterested in robust performance, i.e., not only stability but also
ome specified performance must hold for all possible members
n the plant family (such as GM (s)).

In the multiplicative uncertainty case (1), a necessary and
ufficient condition for robust performance is [12,13]:

|WP (s)S0(s)| + |WM (s)T0(s)|∥∞ < 1. (19)

The basic condition (19) can be easily modified to the form:

WP (jω)| + |WM (jω)L0(jω)| < |L0(jω) − (−1)| ∀ω, (20)

hich leads to the nice graphical interpretation, as depicted in
ig. 6.
According to Fig. 6, the robustly stable closed-loop system is

lso robustly performing if and only if a disc of radius |WP (jω)|
ith the center on the critical point [−1, 0j] is not included in
he envelope of Nyquist plots with a radius of |WM (jω)L0(jω)| and
he center L0(jω).

The direct application of the condition (19) for controller
esign is unsuitable because such defined robust performance
ontrol design problem cannot be solved [12,55]. Thus, other
pproaches have to be used. For example, the condition (19) may
e relatively closely approximated (within a factor of at most

√
2)
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Fig. 6. Graphical interpretation of the condition of robust performance under
multiplicative uncertainty.

for the purpose of controller design for SISO systems by so-called
mixed sensitivity H∞ condition:
WP (s)S0(s)

WM (s)T0(s)


∞

= sup
ω∈R

√
|WP (jω)S0(jω)|2 + |WM (jω)T0(jω)|2 < 1. (21)

Again, for the sake of fullness, the overview of the robust
erformance conditions also for the additive (4), inverse multi-
licative (7), and inverse additive (8) uncertainty models are as
ollows, respectively [12]:

|WP (s)S0(s)| + |WA(s)C(s)S0(s)|∥∞ < 1, (22)

∥|WP (s)T0(s)| + |WIM (s)G0(s)S0(s)|∥∞ < 1, (23)

∥|WP (s)T0(s)| + |WIA(s)S0(s)|∥∞ < 1, (24)

while the conditions (23) and (24) suppose that the nominal
performance condition has not the standard form (18), but it is
given by the formula [12]:

∥WP (s)T0(s)∥∞ = ∥WP (s)T (s)∥∞ < 1. (25)

5. Calculation of robust PID controllers

The aim of this section is to present a graphical approach
to calculating robust (more specifically, robustly stabilizing or
robustly relatively stabilizing) PID controllers for LTI plants with
unstructured uncertainty. The main idea is based on plotting
the envelope that corresponds to the trios of P–I–D parame-
ters marginally complying with given robust stability or robust
relative stability condition. Practically, a set of P-I contours is
obtained (under an accepted tolerance of an applied condition)
for some sampled fixed values of D parameters, which shapes
the whole envelope. Thus, this procedure enables obtaining the
region of robustly stabilizing or robustly relatively stabilizing PID
controllers in a P–I–D space.

Previously, the idea of finding the robust stability area by
means of plotting the boundary contour in a P-I plane was used
for systems with multiplicative [14,32] and additive [33] uncer-
tainty, but only for PI controllers and only from the perspective
of the pure robust (absolute) stability. This paper extends the
approach and presents the calculation of robustly stabilizing or
robustly relatively stabilizing PID controllers.

5.1. Robustly stabilizing controllers

The controller C(s) that guarantees robust stability has to
be designed in order to meet the basic condition, which is the
 s

6

inequality (12), (15), (16) or (17), depending on the kind of the
unstructured uncertainty model. Thus, under the assumption of
PID controllers, the region of robustly stabilizing parameters can
be depicted in the P–I–D space by means of the robust stability
border P–I–D trios, that is, the triplets of P–I–D parameters that
fulfill one of the conditions:

∥WM (s)T0(s)∥∞ = 1, (26)

∥WA(s)C(s)S0(s)∥∞ = 1, (27)

WIM (s)G0(s)S0(s)∥∞ = 1, (28)

WIA(s)S0(s)∥∞ = 1, (29)

here the first Eq. (26) will be used for the multiplicative uncer-
ainty (1), the second condition (27) for the additive uncertainty
4), the third version (28) for the inverse multiplicative uncer-
ainty (7), and the last Eq. (29) for the inverse additive uncertainty
8).

Anyway, the P–I–D trios meeting the corresponding condition
efine the surface that divides the P–I–D space into robustly
tabilizing and robustly non-stabilizing regions. Consequently,
he final set of robustly stabilizing controllers can be determined.

.2. Robustly relatively stabilizing controllers

In accordance with the previous Section 4, the controller C(s)
hat ensures the robust performance has to comply with one of
he conditions (19), (22), (23) or (24), depending on the kind of
he unstructured uncertainty. It was also mentioned that these
asic conditions are usually, for the sake of controller design,
pproximated by a reasonable compromise robust performance
easure (mixed sensitivity H∞ condition), such as the modified
ondition (21) for the multiplicative uncertainty model. Although
t seems the graphical approach described in the previous Sec-
ion 5.1 should be generally applicable also to robust performance
onditions (19), (22), (23) or (24) (since the conditions would be
sed ‘‘just’’ for a set of robust performance boundary tests, and
ot for designing the controller in fact), the necessary calculations
ould be still quite demanding. Thus, this paper prefers another
pproach, and instead of using the classic robust performance
onditions (or their compromise approximations), it presents the
obust relative stability-based method. In other words, no ro-
ustly performing controllers in the sense of conditions (19), (22),
23) or (24) are designed, but rather the controllers that guar-
ntee robust stability with some predetermined safety margin
robust relative stability), which, as a result, leads to some robust
erformance level as well.
This idea will be further explained through the following elab-

ration for the multiplicative uncertainty model: The graphical
epresentation of classic robust performance condition (19) was
epicted in Fig. 6. It can be seen that the forbidden neighborhood
f the critical point [−1, 0j] for the envelope of Nyquist plots is
etermined by a disc of radius |WP (jω)|. On the other hand, this
orbidden neighborhood of the point [−1, 0j] will be given by the
obust stability safety margin now. Consequently, some robust
erformance will be ensured as well, but the further controller
esign calculations will be much simpler (even without any ap-
roximation). The idea of robust relative stability is illustrated in
ig. 7, where the radius |WM (jω)L0(jω)| of the envelope of Nyquist
iagrams is multiplied by a margin factor of α. Naturally, for the
ractical robust stability margin, α > 1 is supposed. For α = 1,
he concept becomes identical with the classic (absolute) robust
tability, which can then be considered as a special case.
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Fig. 7. Graphical interpretation of the robust relative stability condition under
ultiplicative uncertainty. (For interpretation of the references to colour in this

igure legend, the reader is referred to the web version of this article.)

Similarly to the previous Figs. 5 and 6, the drawing in Fig. 7
upposes again a stable open-loop transfer function L0(s) for
implicity. Then, Fig. 7 depicts that the nominally stable closed-
oop system is also robustly relatively stable with a margin factor
f α if and only if the critical point [−1, 0j] is excluded from the
nvelope of Nyquist plots with a radius of α |WM (jω)L0(jω)| and
he center L0(jω).

Thus, the robust stability condition (12) may be modified
o its relativized version as follows: Provided that a nominal
losed-loop control system is stable, the corresponding perturbed
losed-loop control system is robustly relatively stable with a
argin factor of α if and only if:

WM (s)T0(s)∥∞ <
1
α

, (30)

r alternatively:

T0(jω)| <
1

α |WM (jω)|
∀ω. (31)

As mentioned above, when compared with the classic robust
erformance condition (18), the application of the relative stabil-
ty condition (30) for control design requires less computational
ffort. On the other hand, the designer has a lower possibility
f frequency-based shaping because a frequency-dependent per-
ormance weight function WP (s) is not used anymore, and only
M (s), as a part of the plant model, is available.
The analogous relative robust stability conditions for additive

4), inverse multiplicative (7), and inverse additive (8) unstruc-
ured uncertainty models, respectively, are as follows:

WA(s)C(s)S0(s)∥∞ <
1
α

, (32)

∥WIM (s)G0(s)S0(s)∥∞ <
1
α

, (33)

WIA(s)S0(s)∥∞ <
1
α

. (34)

Now, these robust relative stability conditions (30), (32), (33)
r (34) can be utilized in the graphical approach for calculating
ID controllers as described in Section 5.1. So, the region of
obustly relatively stabilizing parameters can be plotted in the
–I–D space using the trios of P–I–D parameters that meet one
f the conditions:

WM (s)T0(s)∥∞ =
1
α

, (35)

WA(s)C(s)S0(s)∥ =
1

, (36)
∞
α

p

7

∥WIM (s)G0(s)S0(s)∥∞ =
1
α

, (37)

WIA(s)S0(s)∥∞ =
1
α

, (38)

where the selection of the specific condition depends on the used
type of the unstructured uncertainty model, analogously to the
previous Section 5.1.

In any case, the P–I–D triplets that fulfill the relevant condition
define the surface dividing the P–I–D space into robustly rela-
tively stabilizing and robustly relatively non-stabilizing regions.
Thus, the final set of robustly relatively stabilizing controllers can
be obtained.

6. Illustrative example 1 — unstructured multiplicative uncer-
tainty

Consider a commonly used first-order plus time delay model
of the controlled plant:

Gpar (s, K , T , Θ) =
K

Ts + 1
e−Θs, (39)

here all three parameters may vary within the following bounds
15]:

, T , Θ ∈ [1, 2] . (40)

First, the model with parametric uncertainty (39) has to be
eplaced by the model with unstructured uncertainty. In fact,
he system with parametric uncertainty would not be needed
t all here, but it is intentionally used as a preliminary model
n this example in order to show the relation with the unstruc-
ured uncertainty model, the construction of which resides in the
hoice of a suitable model type, a nominal system G0(s), and a
eight function, e.g., WM (s). In [15], the model with unstructured
ultiplicative uncertainty was created as:

M (s) = [1 + WM (s)∆M (s)]G0(s)

∆M (s)∥∞ ≤ 1

0(s) =
1.5

1.5s + 1

WM (s) =
1.3s3 + 2.4481s2 + 3.25s + 0.3

0.4s3 + 1.1s2 + 1.6s + 1

. (41)

Note that a time-delay-free nominal model G0(s) is selected,
i.e., the whole time-delay term is considered as the uncertainty,
which typically yields the largest uncertainty region, but this
choice simplifies the model and thus facilitates the future con-
troller design [13]. Generally, models with unstructured uncer-
tainty that are based on models with parametric uncertainty are
more conservative than their parametric counterparts [15].

Fig. 8 [15] presents the comparison of Bode magnitude plots of
the weight function WM (s) and a sampled set of the normalized
perturbations

(
GM (s)
G0(s)

− 1
)

for all variations of parameters with
chosen steps for the gain K = 1 : 0.1 : 2, time constant T =

: 0.1 : 2 as well as time-delay term Θ = 1 : 0.1 : 2. Thus, there
re 113

= 1331 Bode magnitude curves of the samples of the
normalized perturbations (blue curves) and one Bode magnitude
curve of the weight WM (s) (black curve) in Fig. 8 [15]. Then,
Fig. 9 [15] is a zoomed version of Fig. 8 [15] and provides a
more detailed view. As can be seen, WM (s) covers the normalized
erturbations from above for all frequencies, which means that
he inequality (3) is fulfilled.

Suppose that the controlled system with unstructured multi-
licative uncertainty (41) is in the classic feedback loop with the
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Fig. 8. Bode magnitude plots — the sampled set of normalized perturbations
nd weight function WM [15]. (For interpretation of the references to color in
his figure legend, the reader is referred to the web version of this article.)

Fig. 9. Zoomed version of Bode magnitude plots from Fig. 8 [15]. (For
nterpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

deal PID controller:

(s) =
kP s + kI + kDs2

s
. (42)

In accordance with the conditions (12) and (30), the value
f ∥WM (s)T0(s)∥∞ is critical for decision on robust stability and
obust relative stability, and of course, this value depends on
he parameters of PID controller (42). For an illustration of this
ependence, a 3D plot of the values of ∥WM (s)T0(s)∥∞ for various
ariations of parameters kP and kI , with the fixed parameter kD,
s shown in Fig. 10. The parameters kP and kI are sampled by
kP = −5 : 0.1 : 5 and kI = −5 : 0.1 : 5, while kD = 0.1.

Obviously, the value ∥WM (s)T0(s)∥∞ = 1 is the most important
rom the robust stability border viewpoint (see (26)), and thus
he corresponding contour is plotted in Fig. 11. The inequality
WM (s)T0(s)∥∞ < 1 holds true inside the contour. It is obtained

by the numerical procedure, in which the parameters kP and kI
re sampled with step 0.001, and the points that fulfill:

∥W (s)T (s)∥ − 1| < 0.001 (43)
M 0 ∞

8

Fig. 10. Values of ∥WM (s)T0(s)∥∞ for the fixed kD = 0.1 and a selected range
f kP and kI .

Fig. 11. Contour ∥WM (s)T0(s)∥∞ = 1 forming the boundary of the internal
WM (s)T0(s)∥∞ < 1 area in a P-I plane for the fixed kD = 0.1.

re included in the plotted curve. In other words, the set of
oints for which the equality ∥WM (s)T0(s)∥∞ = 1 is met with
he tolerance of one per mille is used for drawing.

The inside of the depicted shape in Fig. 11 could be expected
o represent the robust stability region because the condition (12)
s satisfied for all relevant internal trios of kP , kI , and (fixed) kD.
owever, the true robust stability region is also restricted by kI =

line, since negative kI makes the control loop unstable. On the
ther hand, negative kP , as well as negative kD, are theoretically
llowed as they can robustly stabilize the control system, but they
ill not be preferred in practice. All in all, the region of robustly
tabilizing PID controllers with kD = 0.1 for the controlled system
ith unstructured multiplicative uncertainty (41) is shown in
ig. 12. Note that if kD is fixed at 0, a similar robustly stabilizing
egion will be obtained for a PI controller as a special case of a
ID controller [32].
In order to calculate the final region of robustly stabilizing

ID controllers, the same procedure of computing the partial P-I
egions (Fig. 12) is repeated for a sampled set of kD parameters.
ig. 13 shows the region of robustly stabilizing PID controllers for
D = −0.25 : 0.1 : 0.5. Note that the values kD = −0.25 and kD =
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Fig. 12. Robust stability region for the plant (41) and for the fixed kD = 0.1.

Fig. 13. Region of robustly stabilizing PID controllers for the plant (41).

0.5 represent the minimum and maximum limits (with respect to
the assumed sampling) of the robust stability region, respectively,
since no variations of parameters kP , kI , and kD for kD ⪅ –0.25 or
D ⪆ 0.5 would fulfill ∥WM (s)T0(s)∥∞ < 1, i.e., no corresponding
ontrollers would robustly stabilize the model (41). On the other
and, all possible variations of the parameters kP , kI , and kD inside
he robust stability region from Fig. 13 guarantee robust stability
f the control system with the relevant PID controller and the
odel with unstructured multiplicative uncertainty (41).
In the next step, the attention will be focused on the calcula-

ion of the region of robustly relatively stabilizing PID controllers.
he overall computation procedure remains the same as for the
revious robustly stabilizing case, but the condition that must be
ulfilled by all boundary trios of kP , kI , and kD now changes from
26) to (35), where the margin factor is supposed to be α = 2. So,
he utilized robust relative stability condition (30) is:

WM (s)T0(s)∥∞ <
1
2
, (44)

nd the boundary trios of P–I–D parameters have to meet the
ondition (35):

WM (s)T0(s)∥ =
1
. (45)
∞ 2

9

Analogously to the previous robust (absolute) stability case,
the practical calculations of individual kD-sampled contours are
ased on the numerical approach where the parameters kP and kI
re sampled with step 0.001, and where the accepted tolerance
s one per mille, that is, the following formula is applied:

∥WM (s)T0(s)∥∞ − 0.5| < 0.001. (46)

Then, again, the calculations of partial P-I regions are repeated
or a sampled set of kD, now specifically for kD = −0.14 : 0.02 : 0.2,
ecause the values kD = −0.14 and kD = 0.2 represent the
inimum and maximum limits of the robust relative stability

egion, respectively, with respect to the assumed sampling.
Finally, the region of robustly relatively stabilizing PID con-

rollers, for which all possible variations of the parameters kP , kI ,
nd kD inside it fulfill ∥WM (s)T0(s)∥∞ < 0.5, is plotted in Fig. 14.
hus, Fig. 14 shows the region that guarantees robust relative
tability with the margin factor α = 2(and consequently a certain
egree of robust performance as well) of the control system
ith the relevant PID controller and the model with unstructured
ultiplicative uncertainty (41).
The comparison of both robust stability and robust relative

tability regions is presented in Fig. 15. Naturally, the region of
obustly relatively stabilizing PID controllers (depicted by red
olor) comprises the subset of the region of robustly stabilizing
ID controllers (depicted by blue color). Obviously, similar greater
r smaller subsets could be obtained for smaller or greater values
f the margin factor α > 1, respectively.

. Illustrative example 2 – unstructured additive uncertainty

Consider a third-order plant with integrating behavior, in-
pired by Examples 6.4, 6.5, and 9.5 from [56]:

par (s, a1, a2) =
1

s
(
s2 + a2s + a1

) =
1

s3 + a2s2 + a1s
(47)

ith the parameters lying within the bounds:

1 ∈ [3, 5]

a2 ∈ [1, 3]
. (48)

Similarly to the previous example, the preliminary model with
uncertain parameters (47) will be replaced by the model with
unstructured uncertainty. More specifically, the model with un-
structured additive uncertainty that was constructed in [57] will
be utilized:
GA(s) = G0(s) + WA(s)∆A(s)

∥∆A(s)∥∞ ≤ 1

0(s) =
1

s3 + 2s2 + 4s

A(s) =
0.09 (7s + 1)
s (0.5s + 1)4

. (49)

The comparison of Bode magnitude plots of the weight func-
tion WA(s) and a sampled set of the normalized perturbations
(GA(s) − G0(s)) for all variations of parameters with chosen steps
a1 = 3 : 0.1 : 5 and a2 = 1 : 0.1 : 3 is shown in Fig. 16 [57].
Consequently, Fig. 16 contains 212

= 441 Bode magnitude curves
of the samples of the normalized perturbations (blue curves) and
one Bode magnitude curve of the weight WA(s) (black curve). In
compliance with the inequality (5), weight WA(s) is selected in
order to cover the normalized perturbations from above for all
frequencies.

Consider that the feedback control system consists of the con-
trolled plant described by the model with unstructured additive
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Fig. 14. Region of robustly relatively stabilizing PID controllers for the plant (41) and for α = 2.
Fig. 15. Regions of robustly stabilizing (blue) and robustly relatively stabilizing (red) PID controllers for the plant (41).. (For interpretation of the references to color
n this figure legend, the reader is referred to the web version of this article.)
ncertainty (49) and the ideal PID controller (42), similarly as in
he previous Example 1.

Under unstructured additive uncertainty, the
ontroller–parameter-dependent value of ∥WA(s)C(s)S0(s)∥∞ is
essential for a decision on robust stability (see condition (15))
or robust relative stability (see condition (32)). For example, the
contour ∥WA(s)C(s)S0(s)∥∞ = 1 is plotted in Fig. 17 for kD = −0.1,
and the inequality ∥WA(s)C(s)S0(s)∥∞ < 1 holds true inside this
shape. The contour is achieved by the following numerical way:
The parameters kP and kI are sampled with step 0.005, and the
contour consists of the points that comply with:

|∥W (s)C(s)S (s)∥ − 1| < 0.001. (50)
A 0 ∞

10
Thus, analogously to Fig. 11, the shape in Fig. 17 is practically
composed of the points for which the equality ∥WA(s)C(s)S0(s)∥∞

= 1 is fulfilled with the tolerance of one per mille.
Despite the fact that all relevant internal trios of kP , kI , and

(fixed) kD parameters from Fig. 17 satisfy the condition (15), the
depicted shape is actually not the genuine robust stability region,
because negative kI would make the control system unstable, and
consequently, the robust stability region is bounded by kI = 0 line
from below. Nevertheless, analogously to the previous Example 1,
negative kP and/or negative kD are theoretically permissible, since
they may still lead to a robustly stable control loop — see Fig. 18,
where the true region of robustly stabilizing PID controllers, even
for negative kD = −0.1 and potentially negative kP , is drawn. In
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Fig. 17. Contour ∥WA(s)C(s)S0(s)∥∞ = 1 forming the boundary of the internal ∥WA(s)C(s)S0(s)∥∞ < 1 area for the fixed kD = −0.1.
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ig. 18, the parameters kP and kI are sampled with step 0.001,
nd the tolerance (50) is used again.
As can be seen in Fig. 18, the large part of the robust stability

egion comes under negative values of kP and also kD in this
xample. However, negative controller parameters would not be
referred in practice, so they will be omitted in the following fig-
res for better lucidity, i.e., the presented final robust stability and
obust relative stability regions (Figs. 20 and 21) will be restricted
nly to the nonnegative controller parameters. But before that,
n example of the restricted version of the robust stability region
or the fixed kD (from Fig. 18) is plotted in Fig. 19, where only
11
onnegative values of kP are considered (nevertheless, the whole
egion is still obtained for negative kD = −0.1).

The same process of calculating the partial P-I regions (as in
Fig. 19) is repeated for a sampled set of kD parameters, but only
for nonnegative values of kD due to practical reasons mentioned
bove (more specifically, kD = 0 : 0.2 : 4 in this case). It leads to
he final restricted region of robustly stabilizing PID controllers
or the model with unstructured additive uncertainty (49), as
hown in Fig. 20. Obviously, all possible controller parameter
ariations inside this region guarantee robust stability of the
ontrol loop with the relevant PID controller (with nonnegative
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arameters) and the plant with unstructured additive uncertainty
49).

In the final steps, two various regions of robustly relatively
tabilizing PID controllers (with nonnegative parameters) will be
alculated. The margin factors will be set at α = 1.5 and α = 2.
gain, the general procedure is analogous to the previous cases,
ut now the condition (36) is utilized for obtaining the boundary
rios of kP , kI , and kD. Thus, for α = 1.5 and α = 2, the robust
elative stability condition (32) takes the form, respectively:

WA(s)C(s)S0(s)∥∞ <
1
1.5

=
2
3
, (51)

WA(s)C(s)S0(s)∥ <
1
, (52)
∞ 2

12
and so the boundary trios of controller parameters have to satisfy
the condition (36), respectively:

∥WA(s)C(s)S0(s)∥∞ =
2
3
, (53)

WA(s)C(s)S0(s)∥∞ =
1
2
. (54)

or the case α = 1.5, the individual kD-sampled contours (kD =

: 0.1 : 2.4) are practically obtained by means of the numerical
alculations where the parameters kP and kI are sampled with
tep 0.001, and where the accepted tolerance is again one per
ille, i.e., the following formula is used:

∥W (s)C(s)S (s)∥ − 0.6
⏐⏐ < 0.001. (55)
A 0 ∞
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Similarly, for the case α = 2, the set of P-I contours for
D = 0 : 0.1 : 1.6 are computed on the basis of the inequality:

∥WA(s)C(s)S0(s)∥∞ − 0.5| < 0.001. (56)

The final Fig. 21 shows the region of robust stability (from
ig. 20, now depicted by blue color) together with both regions
f robust relative stability for margin factors α = 1.5 (depicted
y red color) and α = 2 (depicted by green color). With respect
o the previous considerations, they are restricted only to the
onnegative controller parameters. Obviously, the robust relative
tability region for α = 2 (green) is the subset of the robust
elative stability region for α = 1.5 (red), which is the subset of
13
he robust stability region (blue). Anyway, all possible variations
f the nonnegative parameters kP , kI , and kD inside the obtained
egions guarantee robust stability or robust relative stability (with
ome prescribed margin factor and, consequently, with a certain
egree of robust performance as well) of the control loop with
he relevant PID controller and the plant model with unstructured
dditive uncertainty (49).

. Control of airflow speed in a hot-air tunnel

In order to demonstrate the practical applicability of the
ethod to real-life control problems, a robustly relatively stabi-

izing controller will be designed for the laboratory model of a
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Fig. 22. Laboratory model of the hot-air tunnel.
Fig. 23. Diagram of the hot-air tunnel and the whole control system [59–62].
hot-air tunnel, which was constructed in VSB — Technical Uni-
versity of Ostrava [58]. The model consists of the bulb, primary
ventilator, secondary ventilator, and several sensors covered by
the tunnel. The bulb serves as the source of heat and light energy,
and it is powered by a controllable source of voltage. Then, the
purpose of controllable ventilators is to ensure the airflow inside
the tunnel. Generally, the tunnel is a MIMO system, but the
presented control experiment will be performed on a selected
SISO loop. The real appearance of the laboratory hot-air apparatus
is shown in Fig. 22.

All actuators and sensors are connected via the electronic
circuits (adjusting signals to the suitable voltage levels) to the
14
control unit, more specifically CTRL 51 unit, which was created
in the Institute of Information Theory and Automation, Academy
of Sciences of the Czech Republic [63]. Then, this control unit is
connected to the Personal Computer (PC) through the serial link
RS-232. More information about the use of the serial link in the
Matlab environment, including user routines, program synchro-
nization mechanism, and several tests, can be found in [64]. The
scheme of the hot-air tunnel and its connection with the whole
control system is shown in Fig. 23 [59–62]. Note that due to better
visibility, the secondary ventilator is displayed on the opposite
side than it is placed in the real plant.
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Fig. 24. Bode magnitude plots — the sampled set of normalized perturbations and weight function WM (60) .. (For interpretation of the references to color in this
igure legend, the reader is referred to the web version of this article.)
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The considered control loop consists of (primary) ventilator
oltage as the control signal (denoted by the u2 symbol in ac-
ordance with [58,59]) and the airflow speed at the end of the
unnel interpreted by the voltage on the vane flowmeter as the
utput (controlled) signal (symbolized by y7). Two remaining
ctuating (control) signals, namely, bulb voltage (u1) and voltage
f the secondary ventilator (u3), were set to a constant 0 V. The
sed symbols correspond with the real connection of input and
utput channels of CTRL 51 unit. In case of interest, the complete
ist of all channels, including their meaning, can be found in the
orks [58,59].
In [59–61], the mathematical model with parametric uncer-

ainty was obtained by means of performing identification ex-
eriments at various operational points. More specifically, the
ontrolled plant was identified as the second-order system with
double time constant:

par (s, K , T ) =
K

(Ts + 1)2
, (57)

here
∈ [0.3, 1.2]

∈ [1, 3]
. (58)

The gain is dimensionless [-] and the time constant is given in
econds [s].
With regard to the proposed method, a model with unstruc-

ured uncertainty is required. More specifically, the most com-
on model with unstructured multiplicative uncertainty will be
onstructed in this case, analogously to Section 6 and procedures
resented in [15].
The nominal model G0(s) is selected easily by taking the aver-

ge values of (58):

0(s) =
0.75

(2s + 1)2
. (59)

Then, the selection of a suitable weight function WM (s) is
based on a natural technique from [15]. It grounds in the idea that
the worst-case uncertainty is obtained for the controlled plant
 a

15
(57) with the greatest possible gain K = 1.2 and the shortest
possible double time constant T = 1. Such a combination directly
leads to the ‘‘uppermost’’ normalized perturbation Bode magni-
tude characteristics. Thus, the selected weight function WM (s) has
the form:

WM (s) =
27s2 + 22s + 3
5s2 + 10s + 5

. (60)

The comparison of Bode magnitude diagram of (60) and Bode
agnitude diagrams of a sampled set of the normalized per-

urbations
(

GM (s)
G0(s)

− 1
)

for all variations of parameters K =

.3 : 0.05 : 1.2 and T = 1 : 0.05 : 3 is shown in Fig. 24. Analogously
o the previous similar figures, 19 · 41 = 779 blue curves
correspond to the samples of the normalized perturbations and
one black curve represents the weight function (60). Moreover,
Fig. 25 is a zoomed version of Fig. 24 and it clearly shows that
Bode magnitude plot of (60) covers Bode magnitude plots of
normalized perturbations in the tightest possible way. In other
words, the inequality (3) is fulfilled marginally in this case.

All in all, the final model with unstructured multiplicative
uncertainty is considered as:

GM (s) = [1 + WM (s)∆M (s)]G0(s)

∆M (s)∥∞ ≤ 1

0(s) =
0.75

(2s + 1)2

WM (s) =
27s2 + 22s + 3
5s2 + 10s + 5

. (61)

Suppose that the airflow speed in the hot-air tunnel, modeled
y (61), is controlled by PID controller (42). For the sake of
ractical implementation, the emulation of ideal continuous-time
ID control law by means of the discrete-time algorithm was
erformed using the backward rectangular rule, sampling period
.1 s, and a suitable filter for the derivative term.
Analogously to Illustrative Example 1, the ∥WM (s)T0(s)∥∞ < 1

rea could be plotted for a fixed k . Nevertheless, in this case,
D
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Fig. 25. Zoomed version of Bode magnitude plots from Fig. 24. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
Fig. 26. Contour ∥WM (s)T0(s)∥∞ = 1/α forming the boundary of the internal ∥WM (s)T0(s)∥∞ < 1/α area in a P-I plane for the fixed kD = 0.1 and α = 1.1.
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obust relative stability scenario ∥WM (s)T0(s)∥∞ < 1/α is consid-
red directly, with the specific value of margin factor α = 1.1. In
ractical calculations, the parameters kP and kI are sampled with
tep 0.001, and the tolerance of one per mille is supposed. The
orresponding curve forming the boundary of ∥WM (s)T0(s)∥∞ <

.90 area in a P-I plane for kD = 0.1 is plotted in Fig. 26.
Following the discussion in the previous two academic ex-

mples (Illustrative Examples 1 and 2), the regions of robustly
elatively stabilizing PID controllers will be restricted to the non-
egative controller parameters only. Such limited robust relative
16
stability region in a P-I plane for the fixed kD = 0.1 is shown in
ig. 27.
The definitive region of robustly relatively stabilizing PID con-

rollers, restricted to the nonnegative values of the controller pa-
ameters, is depicted in Fig. 28. As before, it is obtained by means
f repeating the previous procedure (from Fig. 27) for a sampled
et of nonnegative parameters kD (with step 0.1 in this case).
vidently, all possible variations of nonnegative-parameter PID
ontrollers from the inside of the region shown in Fig. 28 ensure
obust relative stabilization of the airflow speed in the hot-air
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Fig. 27. Robust relative stability region for the model (61) of airflow speed in the hot-air tunnel and for the fixed kD = 0.1 (restricted to the nonnegative values of
P ).
Fig. 28. Region of robustly relatively stabilizing PID controllers for the model (61) of airflow speed in the hot-air tunnel (restricted to the nonnegative controller
arameters).
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unnel, modeled as the system with unstructured multiplicative
ncertainty (61).
Two specific controllers, C1(s) and C2(s), were selected from

he robust relative stability region (Fig. 28) and applied to control
he speed of airflow in the hot-air apparatus by means of their
iscrete-time emulation as described above. The parameters of
hese controllers are as follows:

1(s) : kP = 1, kI = 0.27, kD = 0

2(s) : kP = 1, kI = 0.32, kD = 0.3
. (62)

As can be seen, the proportional and integral terms were
hosen at the higher levels of possible values determined by
he robust relative stability region (Fig. 28), while the derivative
17
terms are from the lower areas. Actually, C1(s) is a special case
ince it represents the PI controller. The performance of both PI
ontroller C1(s) and PID controller C2(s) is shown in Fig. 29. It
ontains one black curve defining the reference signal, two blue
urves demonstrating the behavior of controller C1(s), and two
ed curves related to controller C2(s). For both controllers, there
s an output (controlled) signal approaching the reference, and a
ontrol (actuating) signal.
The responses from Fig. 29 indicate that controller C2(s) has
shorter settling time but, on the other hand, also a more

ggressive and jittering control signal when compared to C1(s).
nyway, both controllers exhibit generally acceptable behavior.
evertheless, the final choice of some specific controller from the
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Fig. 29. Control of airflow speed in the hot-air tunnel using controllers C1(s) (blue curves) and C2(s) (red curves).. (For interpretation of the references to color in
his figure legend, the reader is referred to the web version of this article.)
obust relative stability region (Fig. 28) would depend on further
references.

. Conclusions

The paper was focused on the computation of regions of
obustly relatively stabilizing PID controllers with some given ro-
ust stability margin α (typically α > 1) for LTI systems affected
y unstructured uncertainty. The procedure is based on plotting
he envelope corresponding to the trios of P–I–D parameters
hat marginally comply with a robust relative stability condition
ormulated via the H∞ norm. Moreover, the presented method
ay also result in the region of robustly (absolutely) stabilizing
ID controllers as a special case for α = 1. The unstructured
ncertainty presented in the plant model can be of any common
ype. The key contribution of this work consists in the extension
f the method for PID controllers and its generalization for the
oncept of robust relative stability. The applicability of the theo-
etical results is shown not only in the illustrative examples but
lso practically verified by means of the real control experiments
n the laboratory model of the hot-air tunnel.
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