
Review on anaerobic digestion models: Model
classification & elaboration of process phenomena

Citation
EMEBU, Samuel, Jiří PECHA, and Dagmar JANÁČOVÁ. Review on anaerobic digestion models: Model
classification & elaboration of process phenomena. Renewable and Sustainable Energy Reviews
[online]. vol. 160, Pergamon-Elsevier Science, 2022, [cit. 2023-02-06]. ISSN 1364-0321. Available at
https://www.sciencedirect.com/science/article/pii/S1364032122002076

DOI
https://doi.org/10.1016/j.rser.2022.112288

Permanent link
https://publikace.k.utb.cz/handle/10563/1010890

This document is the Accepted Manuscipt version of the
article that can be shared via institutional repository.

publikace.k.utb.cz

https://www.sciencedirect.com/science/article/pii/S1364032122002076
https://doi.org/10.1016/j.rser.2022.112288
https://publikace.k.utb.cz/handle/10563/1010890
https://publikace.k.utb.cz/


*Corresponding author 

e-mail address: pecha@utb.cz (Jiří Pecha) 

Review on anaerobic digestion models: Model classification & elaboration of process phenomena 

Samuel Emebu (emebu@utb.cz), Jiří Pecha* (pecha@utb.cz), Dagmar Janáčová (janacova@utb.cz) 

Faculty of Applied Informatics, Tomas Bata University in Zlín, Nad Stráněmi 4511, 760 05 Zlín, 

Czech Republic. 

Abstract 

Biogas is a well-established renewable energy source produced from anaerobic digestion (AD) of 

biomass/feedstock. It is probably the most versatile and efficient biofuel in terms of utilisable 

feedstocks and energy applications. To monitor, optimise, and control anaerobic digestion (AD), 

numerous mathematical models describing AD have been developed and reported. Although literature 

on the use of these models and their reviews have been published, their differences have not been 

collectively analysed and no generalised classification criteria for the models has been proposed based 

on such an analysis. This review covers most reported AD models, from the simplest linear equation 

capturing biogas production rate to complex Anaerobic Digestion Model No. 1. In addition to model 

classification and biochemical stages in AD, other processes like feedstock hydrolysis or mass and 

heat transfer essential to AD were discussed, analysed, and available models on them reviewed. This 

collective and comprehensive review approach has been undertaken to enable the evaluation of the 

interdependence of all processes, process factors, and process estimations and their individual, and 

interactive effects on AD.  

Highlights  

• Models of anaerobic digestion (AD) for efficient biogas production are reviewed. 

• Review facilitates evaluation of interdependence of all processes involved in AD. 

• Single-equation models are suitable for basic simulation and control. 

• Complex models are advantageous when AD process is sensitive to intermediates. 

• Further research in AD modelling should put more focus on the effect of stirring. 

 

Keywords: Biogas, Anaerobic digestion, Single-equation model, Single-step degradation model, 

Multi-step dynamic model, AM2, ADM1, Mathematical modelling, Heat and mass transfer, 
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List of abbreviations 

Abbreviations Meaning of abbreviations 

AD Anaerobic digestion 

ADM1 Anaerobic Digestion Model No. 1  

IWA International Water Association  

AM2 Acidogenesis-methanogenesis-two-steps  

LCFA Long-chain fatty acid  

VFAs Volatile fatty acids 

TG Thermogravimetry  

BMP Biomethane potential  

SM Schnute model  

RM Richard model  

LM Logistic model  

TM Transference model  

SSDM Single-step-degradation model 

TSDM Two-step-degradation model 

MSDM Multi-step-degradation model 

HRT Hydraulic retention times 

CSTR Continuous stirred tank reactor  

FKM First-order kinetic model 

SBM Surface-based model 

GBM Growth-based model 

 

List of symbols  

Symbols Meaning of symbols 

𝑦 Biogas production rate or the total amount of biogas produced 

𝑘ℎ𝑦𝑑, 𝛼, 𝑎, 𝑏, 𝑐 & 𝑘 Rate constant for dynamic and cumulative models 

𝕒,𝕓, 𝕔, and 𝕕 Stoichiometric ratio 

𝑡0, 𝜆, 𝜏,  and 𝑡 Time of maximal biogas production rate, lag time, time constant, 

and instantaneous time  

𝜒 = 𝑉𝑡 𝑉∞⁄  Fraction of biogas produced  

𝑉𝑡, and 𝑉∞ Instantaneous, and total volume of biogas produced 

𝑚𝑖, 𝑚𝑡, and  𝑚∞ Initial, instantaneous, and total volatile solid mass degraded  

𝜎, 𝛽, 𝜑, 𝜂, and 𝛿 Dimensionless shape factors or fitting factor 

𝑁 , and 𝑛 Number of experimental runs and number of process factors or 

species being considered 

𝐴, and 𝑅𝑚𝑎𝑥 Biogas production potential, and maximal biogas production rate  

𝜙 , and 𝜗 Material ratio, and kinetic constant 

𝛽𝑜,  𝛽𝑖, 𝛽𝑖𝑖, and 𝛽𝑖𝑗 Regression constants 

𝑥 Process factors, 𝑥 (pH, concentration, temperature, etc.) 

𝐹,𝐸, 𝐵, 𝑆, ℐ, 𝒜, 𝐺, and 𝐺𝐷 Feedstock, enzymes, microbial biomass, substrate, intermediate, 

acetate, undissolved and dissolved biogas species concentration 

𝑅𝕁 Reactive terms in the degradation process 

𝜇, 𝜇𝑚𝑎𝑥 and 𝐾𝑑 Specific growth, maximum specific growth, and death rate of 

microbial species for computation of 𝑅𝕁 

𝑅𝐸, (𝐾𝐿𝑎), and 𝐾𝐻 Rate of evolution of biogas from liquid to gas phase, mass 

transfer coefficient, and Henry’s constant for biogas species 

𝑌, and 𝐾 Stoichiometric yield and reaction constant for computation of 𝑅𝕁 

𝓈 and 𝒫 Collective degradable matter, and product formation for 

computation of 𝑌 

Σ𝑅𝓈 Summation of all reactions associated with 𝓈 



 

𝑀,and 𝕟 Molar mass and stoichiometric mole ratio  

𝑉𝐺, 𝑉𝐿 , 𝐷, and 𝑞𝑜,𝐺 Gas headspace volume, liquid volume, dilution rate, and biogas 

output flowrate of bioreactor 

𝑝𝑎𝑡𝑚, 𝑝𝑗, and 𝑝𝐺  Atmospheric pressure and biogas species’ partial pressure, 

vapour pressure inside the biogas bubble 

𝑅 Ideal gas constant  

𝜌, 𝑔, and 𝛾 Liquid density, acceleration due to gravity, and surface tension of 

biogas bubbles in the liquid 

𝑘𝑝, and 

(𝜓𝑗
𝑜−𝑣𝑎𝑝𝑜𝑢𝑟

− 𝜓𝑗
𝑜−𝑙𝑖𝑞𝑢𝑖𝑑

) 

Pipe resistance coefficient, and the difference of chemical 

potentials of biogas species, 𝑗 

𝑍𝑖
+ and 𝑍+ Input and dynamic molar concentrations of cations 

𝑅+, 𝐾𝑎,𝐶𝑂2
, and  

(𝜐𝑗𝜓𝑗
𝑜 − 𝜐𝑗𝜓𝑗

𝑜+ − 𝜐𝑗𝜓𝑘
𝑜−) 

Cation production rate, dissociation constant for bicarbonate and 

summation of chemical ion potentials, 

𝐷𝓈,𝑧 and 𝐷𝓈,𝑟 Diffusivities in the axial, 𝑧 and radial, 𝑟 direction 

ℎ𝐿 , and 𝑟𝐵𝑅 Liquid level, and radius of the bioreactor 

ℎ𝐺, and 𝑟𝐺 Depth and radius of biogas bubble 

𝐼𝑗, 𝐾𝐼, and 𝕀 Inhibition parameter of species, inhibition constant, and 

inhibition concentration  

𝑘𝑐, and 𝑘𝑠 Half-saturation coefficients for computation of 𝜇 

𝑘𝑏 , 𝑘𝐶𝐻, 𝑘1, and 𝑘2 Kinetic parameters for computation of 𝜇 

𝑆0, and 𝐺𝑠 Initial substrate concentration and biogas production factor 

𝑝𝐻𝑢𝑙 and 𝑝𝐻𝑙𝑙 Upper and lower 𝑝𝐻 limits  

𝐾𝑚𝐵, and ℰ Maintenance coefficient and activation energy 

𝔸, and ℬ Model constants for computation of temperature-dependent 𝜇𝑚𝑎𝑥 

𝑇, 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥 Temperature, minimum and maximum temperature  

𝐾𝐹𝐻, and 𝐾𝐹𝑆 Rate constants of FKM and SBM for feedstock hydrolysis 

𝐾𝑀, and 𝐾𝐸 Half velocity constant and enzymatic rate constant for hydrolysis 

rate 

Γ, 𝑚𝐹 , and 𝜃 Feedstock surface area, mass, and non-degradable fraction 

Subscript, 𝑗 & 𝒿 = 1, 2, … . , 𝑛 Indicates the species or sequence being considered, typically 

𝑆𝑗 can mean LCFA or glycerol.  

Subscript, 𝑖 Input, and typically the input composition of a substrate species, 

𝑆𝑗= 𝑆𝑖,𝑗 
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1. Introduction  

Energy security and waste management are two recurring critical global security, economic and 

environmental issues that require persistent solutions. The interdependence of these two issues is 

highlighted when municipal and industrial wastes are converted into renewable energy. Biomass’s 

contribution to the world’s renewable energy is approximately 77% [1,2], and about 10% of the global 

energy supply [3]; of which biogas is the most versatile and efficient in terms of utilisable feedstocks 

and direct energy applicability.  

Biogas is composed of approximately 50–75% methane (CH4), carbon dioxide (CO2), and impurities 

like 0–5% nitrogen (N2), 0–5000 ppm hydrogen sulphide (H2S), trace amounts of hydrogen gas (H2), 

carbon monoxide (CO), and usually saturated with moisture (H2O) [4]. It is produced through a 

complex multistep process - anaerobic digestion (AD) of organic matter. The amount and composition 

of biogas produced depend on the efficiency of the biochemical and mass transfer processes in each 

AD stage. These processes are influenced by factors like temperature, biogas species partial pressure, 

and pH. Therefore, mathematical models that relate these factors to feedstock, substrate, and 

intermediate utilisation, and the production of biogas, are required to monitor, analyse, optimise, and 

control AD stability [5–7].  

Consequent to the preceding facts, numerous mathematical models have been developed to describe 

AD. These include the popular Anaerobic Digestion Model No. 1 (ADM1) [8], Gaussian, Gompertz, 

multi-regression, acidogenesis-methanogenesis-two-steps (AM2) models, etc. [9–12]. These models 

are uniquely different in their overall approach (mechanistic or statistical), initial assumptions, process 

phenomena, and the biochemical stages considered in their development. Although literature reviews 

on these models have been published, such differences have not been acknowledged. Liang Yu et al. 

[13], and Ramachandran et al. [14] reviewed ADM1 applicability, Velázquez-Martí et al.[15] 

elaborated on the exponential, Gompertz, transfer function models, etc. Kythreotou et al. [16] and 

Gerber & Span [17] detailed more on substrates and microbial kinetics. These review papers did not 

attempt to elaborate the general perspective on available AD/biogas models, analyse their specificity 

and similarity, and on such a basis deduce a classification approach for them. Although Weinrich & 

Nelles [18] (specifically for AMD1), Manchala et al. [19], Simeonov & Stoyanov [20], Beuvink & 

Kogut [21], and Chezeau & Vial [22] made positive contributions to resolving this issue, yet no 

comprehensive and clear comparative review exists. This issue when solved would facilitate 

appropriate comparisons of results from various biogas models - within and among the different 

classifications.  

In addition to the biochemical stages in AD, other processes like feedstock hydrolysis, mass and heat 

transfers, and physicochemical processes are also essential to the model. This is because they enhance 

the robustness of AD models and make possible the evaluation of certain phenomena. Typically, in 

analysing the rate-limiting step in AD, modelling the hydrolysis, methanogenesis, and mass transfer of 

biogas is important, since one of them could be the slowest [23–27]. Furthermore, crucial - especially 

regarding the accuracy of AD models - are estimations of microbial activity parameters, microbe, and 

biogas yields, etc., and their dependence on process factors. Therefore, it is important to include these 

processes and estimations in a comparative review of AD modelling. Although there are review papers 

on this matter, most are focused on the stoichiometry of bioconversion, substrate, and microbial 

kinetics [16,17,24,28]. This collective and comprehensive review of all processes, process factors, and 

process estimations essential to AD, would enable the evaluation of their individual, and interactive 

effects on AD.  

Therefore, this work seeks to review (theoretically and mathematically), classify, and evaluate AD 

models; independently and in comparison, to others based on their specificity, simplicity, accuracy, 

and applicability. In addition, to a collective and comprehensive review of all processes, process 

factors, and process estimations essential to AD. Most of the models and discussed processes are 
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illustrated with generic expressions allowing the development of an AD model appropriate for a 

specific application. 

2. Description of anaerobic digestion 

To reasonably discuss AD models, the stages in AD shall be briefly introduced, and for consistency 

and clarity, the reaction schemes in each stage shall be illustrated with lipid feedstock and its 

subsequent products. On a holistic level, AD is a simple process - although intrinsically, it involves 

four complex biochemical stages, and mechanical or chemical pretreatment may be required to 

enhance the utilisation of macronutrients [29]. These stages can be divided into: extracellular 

(pretreatment and hydrolysis stages) and intracellular stages (acidogenesis, acetogenesis, and 

methanogenesis)[29], and they occur both sequentially and concurrently via a group of microbes that 

metabolise feedstocks into biogas (mostly CH4 & CO2) in the absence of oxygen, see Fig. 1. 

 

 
Fig. 1. Illustrative scheme of anaerobic digestion stages; LCFA – long chain fatty acids, VFA – 

volatile fatty acids 

 

2.1. Feedstock hydrolysis 

Feedstock hydrolysis has been reported as the rate-limiting step in AD [23–25], and is usually the 

reason why AD may experience long residence time, hence the need for its efficient implementation 

[29]. The hydrolysis rate depends on the type of macronutrients (e.g. biodegradation of amorphous 

cellulose occurs faster than crystalline cellulose [30]), substrate concentration, particle size, pH 

(optimum, 5-7), and temperature (optimum, 30-50 ℃) [17,23].  

𝐶57𝐻104𝑂6 + 3𝐻2𝑂 → 𝐶3𝐻8𝑂3 + 3𝐶18𝐻34𝑂2 (2.1) 

Hydrolytic/acidogenic bacteria are responsible for the hydrolysis of macronutrients (𝐹) into substrates 

(𝑆) via the production of extracellular enzymes - such as cellobiase (carbohydrates(𝐹) into glucose(𝑆)), 

proteases (protein(𝐹) into amino acid(𝑆)) and lipase (lipids(𝐹) into glycerol and fatty acids (𝑆)) 

[17,31,32]. Depending on the nature of the feedstock, the pretreatment and hydrolysis stages may be 

intertwined. Equation (2.1) illustrates the hydrolysis of lipid into glycerol and long-chain fatty acid 

(LCFA), respectively. 

2.2. Acidogenesis of hydrolysis products  

Acidogenesis is the fermentation of simple sugars (e.g. glucose), amino acids, and the anaerobic 

oxidation of alcohols (e.g. glycerol) and LCFA (e.g. oleic acid) by acid-forming bacteria [33,34]. Side 
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(e.g., CO2, H2O, H2, and acetic acid) and intermediate products (e.g., propionic, butyric, valeric acid, 

etc., called volatile fatty acids, VFAs) are also formed. The acidogenic bacteria prefer degradation into 

acetic acid because these stages yield the highest energy and accelerate their growth (typically, a 

minimum doubling time of about 30 minutes), and can tolerate a pH value of 5-6 [17,35]. Although 

such rapid growth may inhibit the AD due to the decline in pH - especially when the acids are not 

metabolised quickly  [36,37]. Note that acidogenesis can produce large amounts of CO2 and H2, 

especially with feedstock high in carbohydrates [38]. Equations (2.2) and (2.3) respectively illustrate 

the acidogenesis of LCFA (oleic acid) and glycerol without microbial activities (i.e. the synthesis of 

microbes (C5H7O2N), energy for growth, and maintenance) [39]. 

𝐶18𝐻34𝑂2 + 16𝐻2𝑂 → 9𝐶2𝐻4𝑂2 + 15𝐻2 (2.2) 

𝐶3𝐻8𝑂3 → 𝐶3𝐻6𝑂2 + 𝐻2𝑂 (2.3) 

2.3. Acetogenesis of acidogenesis products 

Acetogenesis is an intertwined subsidiary of acidogenesis. It involves the anaerobic oxidation of 

intermediaries (e.g. VFAs and alcohols) from acidogenesis to acetic acid and H2 by acetogenic 

bacteria. Inhibition of the proceeding methanogenesis may occur if the H2 produced is not quickly 

metabolised by methanogenic bacteria. The growth of acetogenic bacteria is slow, with a minimum 

doubling time of about 2 to 4 days [37,40,41]. 

𝐶3𝐻6𝑂2 + 2𝐻2𝑂 → 𝐶2𝐻4𝑂2 + 3𝐻2 + 𝐶𝑂2      (2.4) 

𝐶4𝐻8𝑂2 + 2𝐻2𝑂 → 2𝐶2𝐻4𝑂2 + 2𝐻2      (2.5) 

Equations (2.4) and (2.5), respectively, illustrate the acetogenesis of propionic, and butyric acid into 

acetic acid, CO2, and H2, without microbial activities. 

2.4. Methanogenesis of products from acetogenesis 

Methanogenesis of organic matter to CH4 from acetic acid (via the slow and low energy yield of 

acetoclastic methanogens, with a minimum doubling time of about 2-3 days), H2, and CO2 (via fast H2-

utilising hydrogenotrophic methanogens, with a minimum doubling time of about 6 hours) is well 

reported in literature [37] [41]. In addition to these groups, there are the formatotrophic, 

methylotrophic and alcoholotrophic methanogens which utilise formates, methylated compounds (e.g., 

methanol, methylamines and dimethylsulphur) and alcohols, respectively [37]. It should be noted that 

acetoclastic methanogens are sensitive to pH, nutrients, and trace element concentrations and account 

for about 70% of methane production [42]. In general, methanogens are AD “autopilot” because they 

control the alkalinity of the system via utilisation of acetic acid and CO2. Hence, methanogenesis has 

been suggested as the rate-limiting step in AD, especially in conditions of high temperature, and 

soluble feedstock [23,26]. Equations (2.6) and (2.7) illustrate the methanogenesis via acetoclastic and 

hydrogenotrophic methanogens, equations for other groups can be found in [43]. 

𝐶2𝐻4𝑂2 → 𝐶𝐻4 + 𝐶𝑂2      (2.6) 

𝐶𝑂2 + 4𝐻2 → 𝐶𝐻4 + 2𝐻2𝑂      (2.7) 

3. Model review on anaerobic digestion 

The highlighted preceding stages of AD can be developed into a single-equation model and multi-step 

dynamic model, which are essential for simulation and control of the process as detailed in the ensuing 

subsections. These models are based on process factors (e.g. temperature, H2 partial pressure, and pH) 

sensitive to AD. Therefore, it is important to understand how these factors affect the process, and such 

details have been elaborated [29,44,53,45–52]. 
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3.1. Single-equation model 

Single-equation models consider the holistic production of biogas from feedstocks without the various 

biochemical, mass transfer, and physicochemical processes. In these models, one equation describes 

biogas production, without interconnecting equations that describe the other highlighted processes. 

3.1.1. Dynamic single-equation model 

Dynamic single-equation models are designed to predict the biogas production rate (mg·g-1·time-1) 

from a given feedstock. The models are developed to describe changes in biogas production at each 

time step, via a simple-single analytical equation, rather than with a set of differential equations.  

One of the reasons for dynamic models (single-equation or multi-step), is to apply them to process 

control  [54,55]. The dynamic single-equation models are generic expressions that are not based on the 

AD principles, but on data trends, hence their constants do not have a biochemical meaning to the AD 

other than to curve fit the experimental data. Linear, exponential, and Gaussian models are typical 

examples of this type of model. More examples were reported and applied by Barampouti et al.[54]. 

In the linear model, Equation (3.1) [56], the biogas production rate, 𝑦 (mg·g-1·time-1) increases linearly 

with the digestion time, 𝑡 until it reaches its maximum production rate, after which there is a sudden 

linear decrease in production rate to zero. Therefore, its constants, 𝑎 (mg·g-1·time-1) and 𝑏 (mg·g-

1·time-2) are of two values each, in order to model the linear increase and decrease regimes via two 

separate equations. Although this model is simple, the sharp initial increase and sudden decrease are 

not realistic. While in the exponential model, Equation (3.2) [56], the biogas production rate increases 

exponentially with time, 𝑡 until it reaches its maximum, after which it decreases exponentially to zero. 

Its constants, 𝑎 and 𝑏 are of the same dimensions as in the linear model. The constant 𝑐(time-1) is 

positive or negative for the exponential increase or decrease regimes. In comparison to the linear 

model, the exponential model has been reported to be more realistic for the ascending regime; while 

the linear model is supposedly better for a descending regime [57,58]. Ejimofor et al.[58], 

Veszelovszki et al. [59] and Pogaku et al. [60] reported that biogas production rate simulated by the 

linear model showed better correlation than the exponential model. 

𝑦 = 𝑎 + 𝑏𝑡 (3.1) 

𝑦 = 𝑎 + 𝑏𝑒𝑥𝑝(𝑐𝑡) (3.2) 

𝑦 = 𝑎𝑒𝑥𝑝(−0.5((𝑡 − 𝑡0) 𝑏⁄ )2) (3.3) 

The Gaussian model, Equation (3.3) [56] is adequate for simulating biogas production rates in 

ascending and descending regimes with one equation. This model assumes that the biogas production 

rate follows a normal distribution [55]. The dimensions of its constants are similar to those of the 

linear and exponential models, where 𝑎 (mg·g-1·time-1) and b (time-1) are constants and 𝑡0 is the time 

when the maximal biogas production rate occurs. Das & Mondal [55], Lo et al. [56] and Ahmed & 

Kazda [61] utilised and reported an adequate correlation of their AD data with the model. 

3.1.2. Cumulative single-equation model 

Cumulative single-equation models are developed to predict the total amount of biogas produced from 

a feedstock, 𝑦 (mg·g-1) over a duration, 𝑡. Many cumulative models have been reported in literature: 

first-order kinetic, Gompertz, Schnute, transference function model, etc. Most of these models are 

non-linear and were developed based on the assumption of the rate-limiting step (e.g. microbial 

activity, hydrolysis rate, or biogas evolution rate) in the AD. Hence, these models (except the multi-

regression model) can be appropriately termed, specific rate-limiting models. Cumulative models, 

unlike dynamic single-equation models, can be used to determine the following parameters: biogas 

production potential, maximum biogas production rate, and biogas production delay phase [62,63]. 

Therefore, they can be used to compare biomethane potential (BMP) as well as the biogas production 

rate in batch processes - modified Gompertz model is widely used for these purposes [64]. 
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Zuru et al. [65] developed one of the simplest cumulative single-equation models - termed 

thermogravimetry (TG) kinetic model, based on the relationship between the fraction of biogas 

produced over a duration, 𝑡 ,Equation (3.4). Where = 𝑉𝑡 𝑉∞⁄  , 𝑉𝑡 is the biogas volume generated over 

time, 𝑡 and is proportional to the volatile solid mass degraded at that time, i.e. 𝑉𝑡 ∝ (𝑚𝑖 − 𝑚𝑡) and 𝑉∞, 

is the total biogas volume produced, and  𝑉∞ ∝ (𝑚𝑖 − 𝑚∞), the volatile solid degraded over the entire 

process. Where 𝑚𝑖 and 𝑚∞ are the initial and total volatile solid mass. 

𝜒1 𝜎⁄ = 𝑘𝑡 (3.4) 

It was assumed that biogas bubble nucleation and growth is the rate-determining step and that the 

value of 𝜎 describes the nucleation processes, with the value range, 2-4 being more applicable. 

Another simpler cumulative model is the first-order kinetic model, Equation (3.6). Where 𝐴 is the 

biogas production potential (mg·g-1) and 𝑘 the first-order kinetic constant (time -1). This model is based 

on the hypothesis that hydrolysis controls AD and that availability of substrate is the limiting factor 

[66].  

𝑦 = 𝐴{1 − exp(−𝑘𝑡)} (3.6) 

Bilgili et al. [67] and Gioannis et al.[68] reported a good correlation of this model with experimental 

data. It is assumed that the kinetic factor 𝑘 is constant. However, during biogas production, process 

variables like microbial population change considerably with time and as such, this assumption is 

limited. Also, in cases where the biogas production shows delay, the model performs poorly, since it 

does not incorporate a delay factor [69].  

The Gompertz model describes the cumulative biogas production curve in batch AD assuming the 

substrate concentration limit growth of microbes in a logarithmic relationship [70], Equation (3.7). 

The model was initially developed to describe microbe growth in batch mode [9,10]. However, for a 

better fit of experimental data, the modified Gompertz model, Equation (3.8) is often used [56][71]. 

Where 𝑅𝑚𝑎𝑥 is the maximal biogas production rate (mg·g-1·time-1), 𝑒 = 𝑒𝑥𝑝 (1) and 𝜆 accounts for the 

latency phase (time). Although the true meaning of λ seems unclear [72]. Lay et al. [71] described the 

derivation of Equation (3.8). 

𝑦 = 𝐴𝑒𝑥𝑝(−𝑒𝑥𝑝(𝑏 − 𝑐𝑡)) (3.7) 

𝑦 = 𝐴𝑒𝑥𝑝{− 𝑒𝑥𝑝([𝑅𝑚𝑎𝑥𝑒(𝜆 − 𝑡) 𝐴⁄ ] + 1)} (3.8) 

 

Pramanik et al.[66] and Achines et al.[73] applied and compared cumulative models such as the 

first-order kinetic, modified Gompertz, logistic function, and cone models, and the results showed 

reasonable fit to the experimental data. However, Pramanik et al.[66] found that the modified 

Gompertz model was better as supported by Zahan et al.[74] and Deepanraj et al.[75].Van et al. 

[72] also utilised a cumulative biogas model, Equations (3.9) - (3.11) which can be considered a 

modified form of the Gompertz model. However, the constants in this model were deduced from a 

combination of equations solved simultaneously. Although the model is simple and robust, it is quite 

complicated - especially in the definition of factors. Where 𝑡𝑜 is earlier defined and 𝜗 is a kinetic 

constant. 

𝑦 = 𝐴{1 − 𝑒𝑥𝑝 ((𝜗 − 1)(𝑡 𝑡𝑜⁄ )1 𝜗⁄ )} (3.9) 

𝑅𝑚𝑎𝑥 = {𝐴 (𝑒. 𝜗. 𝑡𝑜)⁄ }𝑒𝑥𝑝 (𝜗). (1 − 𝜗) (3.10) 

𝐴 = 𝛽𝑜 + Σ𝑗=1
𝑛 𝛽𝑗𝜙𝑗  (3.11) 
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Van et al. [72] used a linear regression model, Equation (3.11), that relates the biogas yield, 𝐴 and 

material ratio, 𝜙 with Equation (3.9) and (3.10) to deduce 𝐴, 𝑅𝑚𝑎𝑥 , 𝜗 and 𝑡𝑜.Where 𝛽𝑜 and 𝛽𝑗 in 

Equation (3.11) are the intercept and slope of the model and 𝑛, the number of different material ratio 

considered. 

Other cumulative models reported in literature are given in Table 1. Where 𝑘ℎ𝑦𝑑, 𝛼, 𝑎, 𝑏, 𝑐 & 𝑘 are 

rate constants (time-1), 𝜆 is the lag time, 𝜎, 𝛽 & 𝛿 are shape factors, and 𝑦1 and 𝑦2 are biogas produced 

at the time 𝑡1 and 𝑡2, respectively. 

Table 1. Some popular cumulative biogas production models 

Model Expression  

Schnute 

model (SM) 

[76] 

𝑦 = 𝑦1
𝛽

+ (𝑦2
𝛽

− 𝑦1
𝛽

) {[1 − 𝑒𝑥𝑝(−𝛼(𝑡 − 𝑡1))]/[1 − 𝑒𝑥𝑝(−𝛼(𝑡2 − 𝑡1))]}1 𝛽⁄  (3.12a) 

Modified SM  

[77] 
𝑦 = 𝑅𝑚(1 − 𝛽)/𝛼{(1 − 𝛽𝑒𝑥𝑝 (𝛼𝜆 + 1 − 𝛽 − 𝛼𝑡))/(1 − 𝛽)}1 𝛽⁄  (3.12b) 

Richard 

model (RM) 

[78]  

𝑦 = 𝑎{1 + 𝛿exp [𝑘(𝜏 − 𝑡)]}−1 𝛿⁄  (3.13a) 

Modified 

RM [79] 
𝑦 = 𝐴[1 + 𝛿𝑒𝑥𝑝(1 + 𝛿). 𝑒𝑥𝑝 {(𝑅𝑚𝑎𝑥(1 + 𝛿) 𝐴⁄ ) (1 + 1 𝛿⁄ ) (𝜆 − 𝑡)}]−1 𝛿⁄  (3.13b) 

Logistic 

model (LM) 

[78]  

𝑦 = 𝑎/{1 + 𝑒𝑥𝑝(𝑏 − 𝑐𝑡)} (3.14a) 

Modified LM 

[78,79]  
𝑦 = 𝐴 [1 + 𝑒𝑥𝑝 {(4𝑅𝑚𝑎𝑥(𝜆 − 𝑡) 𝐴⁄ ) + 2}]⁄  (3.14b) 

Transference 

model (TM) 

[80] 

𝑦 = 𝑎{1 − exp(𝑏 − 𝑐𝑡)} (3.15a) 

Modified TM 

[81]   
𝑦 = 𝐴{1 − 𝑒𝑥𝑝 (−𝑅𝑚𝑎𝑥(𝑡 − 𝜆) 𝐴⁄ )} (3.15b) 

Cone model 

[82] 
𝑦 = 𝐴 (1 + (𝑘ℎ𝑦𝑑𝑡)−𝜎)⁄  (3.16) 

Fitzhugh 

model [83] 
𝑦 = 𝐴(1 − 𝑒𝑥𝑝(−𝑘𝑡)𝜎) (3.17) 

 

The original or modified forms of the Schnute, Equation (3.12) [76,77,84], and Richard model, 

Equation (3.13) [76,78,85] were deduced based on microbial growth activity like the Gompertz, 

logistic, and transference function models - but with the inclusion of power factors to better account 

for different types of feedstocks, and to ensure a more accurate fit of experimental data, since this 

allows for flexibility in the shape of their curves [21,76,78]. From its derivation, the Schnute model is 

considered a generalised form of microbial growth activity models that includes, the first-order 

kinetic, logistic, Gompertz, Richards model, etc., and they can be deduced from it  [64,76,84,86]. 

Furthermore, the Richard model based on the value of its fourth parameter (𝛿 = −1, 0 & 1), can be 
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reduced to the (transference, and first-order kinetic{𝜏 = 0}), Gompertz, and logistic models 

respectively [78].  

The modified logistic model, Equation (3.14) gives a good prediction of the initial exponential 

increase and a final plateau at the maximal production level. It assumes the biogas production rate is 

proportional to the quantity of biogas already produced [66,87]. While the modified transference 

function, Equation (3.15) is a reactive curve-type model, based on control theory since it assumes that 

the biogas production process is a system receiving inputs and generating outputs, based on biogas 

yield from substrates [81,87]. The cone model, Equation (3.16) [82], assumes biogas production is 

dependent on the hydrolysis, and type of feedstock used, via the inclusion of a shape factor (𝜎) to 

account for the possibility of a lag phase. Consequently, this model is expected to correctly predict 

biogas yield from feedstocks with poor or heterogenous degradability [88–90]. Observation of 

Equations (3.16) and (3.17), the Fitzhugh model [83] shows some similarity, since, in comparison with 

other models, only two constants have biological/physical meaning, while the other parameter, 𝜎, is a 

dimensionless shape factor used for better fitting of experimental data [91].  

Cumulative models discussed thus far can be classified as exponential models (first-order kinetic, 

cone, Fitzhugh model, etc.); and sigmoidal models (Richard, Gompertz, logistic, transference model, 

etc. - in their original or modified form) [21,78,92,93]. Sigmoidal models are identifiable by the 

presence of a lag factor in their equations. While the exponential models have no lag factor and their 

data trends resemble curves with a negligible plateau at their ends, as illustrated by the curve of the 

first-order kinetic exponential curve in Fig. 2. Note that the reverse L-shape curve reaches its plateau 

faster than the exponential curve. Typically, the modified Gompertz model applies best to the 

degradation of simple organic substrates and adopts the reverse L-shape curve. While a complex 

substrate with heterogenous degradability resembles the elongated S-shape or stepped curve, and in 

this case models with flexible inflexion point like the Richards model with a fourth shape parameter 

are applicable [78]. 

 
Fig. 2. Typical cumulative methane production curves[78] 

 

Based on the preceding discussion, the criteria for choosing a cumulative model are dependent on the 

initial observation of plotted experimental data. While it may be clear to differentiate exponential and 

sigmoidal curves, the best model among exponential models would involve trial and error. Literature 
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reports on exponential models are shown in Table 2 [88,94,95]. Although regarding sigmoidal models, 

the modified Gompertz model is applicable to reverse L-shape curve [78,96]; however, for the 

elongated S-shape the logistic or transference model [96] can be chosen - based on trial and error, as 

suggested by Li et al. [81] and Veluchamy & Kalamdhad [97], Table 2. Finally, for the stepped 

curve, the Schnute or Richard models are suitable as supported by Alizadeh et al. [77] and Ware & 

Power [78], Table 2. 

Although the works in Table 2 have used and compared exponential and sigmoidal models with each 

other, observation shows that the chosen cumulative model may have been influenced by the feedstock 

characteristic (i.e., degradability extent, feedstock heterogeneity, etc.), and operational conditions 

(e.g., feedstock pretreatment). This implies choosing a cumulative model requires prior analysis of 

experimental data. 

 

Table 2. Literature on the degradation of feedstock to biogas 

Observed literature Feedstock & condition Cumulative models used Preferred model(s) 

El-Mashad [88] 
Switchgrass and Spirulina 

platensis algae 

First-order kinetic, 

modified Gompertz, 

Fitzhugh, & cone 

models 

Cone model best 

fitted the data 

Cao et al. [94] 
Untreated and pretreated 

sorghum bagasse 

Fitzhugh, cone, 

monomolecular & 

modified Gompertz 

models 

Cone & Fitzhugh 

models fitted better 

for untreated & 

pretreated 

feedstocks 

respectively 

Zhao et al. [95] Different fruit residues 

First-order kinetic, 

modified Gompertz, 

cone & Fitzhugh models 

Modified Gompertz 

and cone models 

fitted the data 

better 

Alizadeh et al.[77] Kitchen waste 

Mitscherlich, Gompertz, 

modified Gompertz, 

logistic & Schnute 

models 

Schnute and 

modified Gompertz 

models gave better 

fit 

Cetinkaya & 

Yetilmezsoy [98] 

Different agro-industrial 

substrates 

Modified Gompertz, 

modified transference 

function, & modified 

logistic function models 

Modified logistic 

function model 

fitted better 

Ware & Power [78] 
Complex poultry 

slaughterhouse wastes 

Modified Richards, 

modified logistic, & 

modified Gompertz 

models 

Modified Richards 

model fitted best 

Li et al. [81] 
Conventional thermal 

pretreatment of grass 

Logistic function, 

modified Gompertz, & 

modified transference 

function models 

Modified 

Transference 

function model 

gave the best fit 
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Zaidi et al.[99] Microalgal biomass 
Modified Gompertz & 

modified logistic models 

Modified logistic 

function model 

fitted best 

Zaidi et al.[100] Green algae 
Modified Gompertz & 

modified logistic models 

Modified Gompertz 

fitted best 

Veluchamy & 

Kalamdhad [97] 

Lignocellulose pulp and 

paper mill sludge 

Modified Gompertz & 

modified logistic, 

modified transference 

models 

The modified 

Gompertz and 

logistic models had 

better fit 

 

3.1.3. Multi-regression single-equation model 

A multi-regression single-equation model is a multivariable equation that can be used to describe both 

dynamic and cumulative characteristics of biogas production, especially in cases when the exact mass 

transfer mechanism is unclear. This model in general can be a linear or nonlinear multivariable 

equation and can be simplified into a linear or nonlinear single-variable equation. Das & Mondal 

[55], and Lo et al. [56] utilised the linear single-variable equation, Equation (3.1). The generalised 

linear or nonlinear multi-regression single-equation model, Equation (3.18) may be deduced via design 

of experiment (DOE) with 𝑁 number of experimental runs. Where 𝑓(𝑥) is the response i.e. biogas 

yield, 𝑥𝑗  and 𝑥𝒿 represent the process factors, 𝑥 (pH, concentration of substrate, temperature, etc.), 𝛽𝑜 

is the model constant, 𝛽𝑗, the linear term, 𝛽𝑗𝑗, the quadratic term, 𝛽𝑗𝒿, the interactive term coefficient 

and 𝑛, the number of process factors [19]. Motte et al. [101] developed a multiple linear regression 

model to determine the impact of total solid (TS) content, inoculation ratio, and particle size of 

lignocellulosic biomass in AD. 

𝑓(𝑥) = 𝛽𝑜 + Σ𝑗=1
𝑛 𝛽𝑗𝑥𝑗 + Σ𝑗=1

𝑛 𝛽𝑗𝑗𝑥𝑗
2 + Σ𝑗=1

𝑛 Σ𝒿=1
𝑛 𝛽𝑗𝒿𝑥𝑖𝑥𝒿 (3.18) 

Alternative to the Equation (3.18), is a form of nonlinear multi-regression single-equation model 

without interactive term and with the highest order ≥ the quadratic term, developed without DOE but 

based on curve-fitting of experimental data. This form of model is appropriately termed polynomial 

model, Equation (3.19), and it can also be used to predict biogas production in the form of dynamic 

and cumulative model. Where 𝑛 and 𝑗 =1, 2…, 𝑛 are the order and order sequence of the polynomial 

model, 𝛽𝑜 and 𝛽𝔧 are the model constant, and coefficient of the independent variable, 𝑥, typically the 

amount of the specific feedstock. Al-Wahaibi et al. [102] utilised this model for the prediction of 

biogas and methane production from date fruit, rice waste, legume beans and food waste. Abu-Reesh 

[103] utilised the model for prediction of biogas from pretreated wheat straw. 

𝑓(𝑥) = 𝛽𝑜 + Σ𝑗=1
𝑛 𝛽𝔧𝑥

𝑗 (3.19) 

In summation of single-equation models, the dynamic single-equation models are not developed on 

AD principles, but on the mathematical relationship of experimental data trend. However, cumulative 

single-equation models are developed based on the assumed rate-limiting step; hence, their constants 

are meaningful to the AD, unlike dynamic single-equation models. Although dynamic single-equation 

models have meaningless constants – they are more appropriate for process control, since they predict 

the production rate rather than accumulative biogas yield. However, it should be noted that the effects 

of control factors like temperature, specific microbial activity, pH, etc. are not accountable in most 

single-equation models. This suggests that they may be inadequate for robust process control. 

Regarding the robustness of these models; while some models like thermogravimetry and first-order 

kinetic models assume constant kinetic factors, some others attempt an improved time-dependent 

kinetic factor for better experimental data prediction. The multi-regression single-equation model is 
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perhaps the most robust, since it is flexible and versatile during model development. This is because it 

can be designed as a dynamic or cumulative model and can incorporate the effect of all factors that 

affect AD. Therefore, in comparison to other models, better experimental data prediction is expected 

and consequently, this model would be more robust for process control [104]. Attempts have been 

made to improve the fit of single-equation models by incorporating them into multi-regression single-

equation models. Van et al.[72] used the material ratio to develop a linear multi-regression single-

equation model to estimate the biogas potential. Mu et al. [105] incorporated the solution of specific 

microbial growth rate deduced from the modified Gompertz model in the response of the DOE of AD 

factors (temperature, pH, and initial substrate to initial microbes ratio), to deduce the maximum 

specific microbial growth rate based on a nonlinear multi-regression single-equation model. 

3.2. Multi-step dynamic model 

The multi-step dynamic model accounts for a broad range of process phenomena involved in AD, 

using more than one sequentially interconnected dynamic equation. These equations among others 

include the dynamics of microbial growth, feedstock and the resulting substrate utilisation, biogas 

formation and evolution, etc., developed to predict the biogas production rate (mg·g-1·time -1) or 

(mg·L-1·time -1) from a given feedstock mass at any point in time, 𝑡. The simplicity or complexity of 

the model is dependent on how much detail is incorporated into it. In defining the nomenclature of this 

model, the term “multi-step” implies the stages and processes in the AD. While “dynamic” implies 

that these stages are described using a time-dependent differential equation. 

Furthermore, the multi-step dynamic model can be grouped into three subcategories based on the 

substrate degradation level considered in the model, as illustrated in Fig. 3.: single-step-degradation 

model (SSDM), considers the direct degradation of substrates (𝑆𝑗, amino acids, sugars, LCFA & 

glycerol, etc. obtained from their respective feedstocks (𝐹) composed of  proteins, carbohydrates, 

lipids, etc.) into biogas (𝐺); two-step-degradation model (TSDM), considers the acidogenesis of 

substrates into acetic acid (𝒜) and methanogenesis of acetic acid into biogas; and multi-step-

degradation model (MSDM) considers all substrate degradation levels, i.e. acidogenesis of a 

substrate to acetic acid and intermediates (ℐ𝑗, volatile fatty acids, alcohols, etc.), acetogenesis of 

intermediates, and methanogenesis of products from acidogenesis and acetogenesis into biogas. Note 

that some parts of the feedstock, substrates, and intermediates are converted into biomass (𝐵). This 

type of dynamic model classification is similar to that suggested by Simeonov & Stoyanov [20], and 

analogous to the suggestion by Weinrich & Nelles [18] for AMD1. Note that 𝑅𝕁 = 𝑅𝑆𝑗
,𝑅𝐵/𝑆𝑗

, 𝑅𝐺𝑗/𝑆𝑗
, 

represent the reactive terms in the degradation process. Typically, for illustrative purposes, the reactive 

terms starting with 𝐵 (e.g., 𝑅𝐵/𝑆𝑗
) represent the consumption rate of a given reaction component (e.g., 

substrate, 𝑆𝑗) into microbial biomass, 𝐵.  

 
 

 
Single-step degradation Two-step-degradation Multi-step degradation 

Fig. 3. Illustration of degradation steps considered in anaerobic digestion modelling; 𝐹 – feedstock, 

𝑆𝑗 – j-th substrate, 𝐵 – microbial biomass, 𝐺 – biogas, 𝐴 – acetic acid, 𝐽𝑗 – j-th intermediate, 𝑅𝕁 =

𝑅𝑆𝑗
, 𝑅𝐵/𝑆𝑗

, 𝑅𝐺𝑗/𝑆𝑗
, … – reactive terms in the degradation process 
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Different types of multi-step dynamic models also consider one or more of the following phenomena: 

hydrolysis of feedstock into substrates; physicochemical activities (such as dynamic equation to 

deduce pH); mass transfer from the liquid phase to the gas phase; and heat transfer in the AD process. 

3.2.1. Single-step-degradation model 

The SSDM is quite a simplified model. This model directly evaluates the biogas yield from the 

substrate, 𝑆𝑗. Fedailaine et al. [5] developed a SSDM that is both simple and suitable for control and 

found it capable of monitoring the progression and design of the AD system. Equation (3.20) 

illustrates the generic expression for this model. Note that the illustrative Equations (3.20) – (3.25) are 

based on a generalised continuous stirred tank reactor (CSTR) type bioreactor. Where 𝑗 =

1, 2, … . , 𝑛 indicates the number of species being considered, i.e. various substrates, 𝑆𝑗 (e.g. LCFA and 

glycerol from lipid feedstock, with input composition, 𝑆𝑖,𝑗), intermediates, ℐ𝑗 (VFAs, alcohol, etc., with 

input composition, ℐ𝑖,𝑗) and biogas constituents, 𝐺𝑗 (e.g. CH4, CO2, H2, etc.,) in the process. 𝐷 is the 

bioreactor dilution rate (i.e. the inlet volumetric feed rate to liquid volume ratio). 

𝑑𝑆𝑗 𝑑𝑡⁄ = 𝐷(𝑆𝑖,𝑗 − 𝑆𝑗) + 𝑅𝑆𝑗
− 𝑅𝐵/𝑆𝑗

− Σ𝑗=1
𝑛 𝑅𝐺𝑗/𝑆𝑗

 (3.20) 

 

3.2.2. Two-step-degradation model 

The TSDM, also referred to as the AM2 model (acidogenesis methanogenesis, two-step model), is 

well suited for the control and design of software sensors [106] (due to its simplicity, i.e. lesser state 

variables, and parameters in comparison to MSDM), and AD monitoring [107]. In this model, the 

dynamics of the reaction of acetic acid, 𝒜 is included with that of substrates, 𝑆𝑗, Equations (3.21) – 

(3.22). This model’s performance is just as satisfactory in comparison to the reference AD model, 

ADM1 [106]. Hill & Bart [11], Havlik et al.[12], Moletta et al. [39], Kiely G.et al. [108], Haugen 

et al. [109], Saeed et al. [110], Ma et al. [111], etc. utilised and reported models that can be classified 

as TSDM. In general, these authors reported a satisfactory comparison of simulated and experimental 

data. Hill & Bart [11], specifically found that the TSDM was well within ±10% of the experimental 

data and the stability of the process. Kiely et al. [108] performed sensitivity analysis of model 

parameters and suggested parameters that were the most and least sensitive to AD. Flores-Estrella et 

al.[112] and Kil et al.[113] used the TSDM model for AD control. Furthermore, Alcaraz-González et 

al. [114,115] showed that the TSDM model can support online control and optimisation [116].  

𝑑𝑆𝑗 𝑑𝑡⁄ = 𝐷(𝑆𝑖,𝑗 − 𝑆𝑗) + 𝑅𝑆𝑗
− 𝑅𝐵/𝑆𝑗

− 𝑅𝒜/𝑆𝑗
 (3.21) 

𝑑𝒜 𝑑𝑡⁄ = 𝐷(𝒜𝑖 − 𝒜) + 𝑅𝒜/𝑆𝑗
− 𝑅𝐵/𝐴 − Σ𝑗=1

𝑛 𝑅𝐺𝑗/𝒜 (3.22) 

3.2.3. Multi-step-degradation model 

A popular MSDM is the Anaerobic Digestion Model No.1 (ADM1), developed by Batstone et al. [8] 

in collaboration with the International Water Association (IWA). The ADM1 is comprehensive [13], it 

incorporates dynamics for reactions of all intermediates, ℐ𝑗 (VFAs, alcohols etc.), in addition to that of 

acetic acid, 𝒜 and substrates, 𝑆𝑗. Although ADM1 is a robust model, it is complex, and numerical 

challenges may be expected in real-time implementation of state estimators and model-based 

controllers [109]. Boubaker & Ridha [117], and Bornhoft et al. [118], Beschkov et al. [119], 

Keshtkar et al. [120], Balmant et al. [121], etc. successfully utilised the MSDM. Boubaker & 

Ridha [117] used the modified ADM1 model for simulation and evaluation of parameters’ sensitivity, 

and found good accuracy at different hydraulic retention times (HRT) and feed concentration. They 

concluded it can be used to improve the design and operation management of AD. This result was also 

supported by Bornhoft et al.[118], where it was suggested that ADM1 yielded qualitative results, 

especially when AD shows high sensitivity to one or more intermediates. Haugen et al.[109] noted 

ADM1 can result in poor biogas production predictions with temperature changes in the process; 

however, this can be improved by using the Arrhenius temperature function to express temperature 

dependent parameters or by adopting a similar approach [122,123]. While Beschkov et al.  [119], 



-12- 

 

Keshtkar et al. [120], and Balmant et al. [121] used a specialised MSDM related to their processes. 

In addition, specific MSDM models incorporating temperature effects were successfully used for 

modelling of temperature phased AD [124,125], a process in which AD is realized in a series of 

reactors operated at different conditions. Equations (3.23) – (3.25) illustrate the generic expression of 

MSDM.  

 

𝑑𝑆𝑗 𝑑𝑡⁄ = 𝐷(𝑆𝑖,𝑗 − 𝑆𝑗) + 𝑅𝑆𝑗
− 𝑅𝐵/𝑆𝑗

− 𝑅𝒜/𝑆𝑗
− Σ𝑗=1

𝑛 𝑅ℐ𝑗/𝑆𝑗
 (3.23) 

𝑑ℐ𝑗 𝑑𝑡⁄ = 𝐷(ℐ𝑖,𝑗 − ℐ𝑗) + 𝑅ℐ𝑗/𝑆𝑗
− 𝑅𝐵/ℐ𝑗

− 𝑅𝒜/ℐ𝑗
− Σ𝑗=1

𝑛 𝑅𝐺𝑗/ℐ𝑗
 (3.24) 

𝑑𝒜 𝑑𝑡⁄ = 𝐷(𝒜𝑖 − 𝒜) + 𝑅𝒜/𝑆𝑗
+ 𝑅𝒜/ℐ𝑗

− 𝑅𝐵/𝒜 − Σ𝑗=1
𝑛 𝑅𝐺𝑗/𝒜 (3.25) 

 

In summary of the multi-step dynamic model, while the MSDM & TSDM are comprehensive in 

accounting for the formation and utilisation of intermediates like acetate, propionic acid, etc. [17], 

their exact pathway for formation, breakdown, and measurement is ambiguous. Although the 

biochemical mechanism is clear on how intermediates and biogas are formed, depending on the 

operating conditions, microbe activity, feedstock characteristics, etc., the exact pathway followed in 

biogas formation is not certain and as such the contribution of each intermediate into biogas formation 

cannot be ascertained. As an illustration, consider the degradation of LCFA into acetate, accompanied 

with intermediates like propionic, butyric, valeric acids, etc., which are subsequently broken down into 

acetate, formate, etc., the process measurement of the acetate (used in modelling the dynamics of 

acetate) cannot quantify the amount of acetate formed directly from LCFA and those formed from the 

various intermediates. Likewise, the exact proportion of biogas formed from acetate and the reaction 

of hydrogen and carbon dioxide is not certain. Therefore, considering these uncertainties, it seems 

reasonable to directly deduce the biogas yield from the substrate via theoretical yield of the specific 

substrate (i.e., via the SSDM), collaborated with measured parameters from experimental analysis, to 

deduce the actual biogas yield. This approach allows for simpler, quicker, and adequate evaluation of 

unknown parameters, due to fewer number dynamic equations. In situations where the AD is not 

highly sensitive to one or more intermediates, MSDM & TSDM make for complexity rather than the 

accuracy of the simulated result. This is because the more dynamic equations for intermediates 

incorporated in the overall AD model, the more difficult its solution becomes and stiff in terms of 

resulting differential equations system [109,126]. However, for cases where AD is highly sensitive to 

one or more intermediates, the more detailed the description of intermediates’ dynamics, the better the 

accuracy of the developed model. This preceding inference was highlighted by Bornhoft et al.[118] 

and, extensively, by Arzate et al.[127] for AM2 and ADM1. Based on this premise regardless of the 

complexity of MSDM & TSDM for these cases, they give better results than the SSDM. Therefore, it 

can be suggested that the magnitude of the difference in accuracy between MSDM, TSDM, and 

SSDM is dependent on the degree of sensitivity of AD to such intermediates.  

Although TSDM & MSDM are expected to give accurate results, in developing and simulating such 

models, especially MSDM, many parameters need to be estimated and measured. However, such 

measurement may be unavailable, time-consuming, laborious, and expensive. 

Furthermore, because some process variables negatively affect AD efficiency and stability, it is 

necessary to control the process. In general, dynamic models are popularly used for this purpose 

[5,106,109,128]. The dynamic single-equation, multi-regression single-equation, and multi-step 

dynamic models are such models. It has been reported that SSDM and TSDM are better as control 

models as opposed to MSDM. This conclusion was based on the degree of complexity and solvability 

of these models. Fedailaine et al. [5] for example, developed an SSDM due to its simplicity, and 

suitability for control. Also, the use of AM2 for control purposes (due to its tractable and fewer state 

variables), rather than ADM1 with numerous state variables and parameters was reported 
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[106,109,128]. Sbarciog et al.[129], and Giovannini et al.[130] used the AM2 for the control of 

hydrogen gas concentration, an important identifiable indicator of the stability of the AD process. 

Therefore, based on this premise, it is expected that the SSDM will be better for control purposes due 

to fewer equations and parameters as compared to the TSDM & MSDM models. In summation of the 

discussion thus far, in terms of the solvability, measurability, inaccuracy, and controllability of the AD 

the SSDM > TSDM > MSDM; while on the contrary, in terms of complexity, immeasurability, 

prediction accuracy, and uncontrollability MSDM > TSDM > SSDM. 

4. Auxiliary process models and phenomena to multi-step dynamic model 

In order to implement multi-step dynamic model, Equations (3.20) – (3.25), for a specific system, 

additional dynamics models, thermodynamic & physiochemical equations describing related 

phenomena have to be defined.  

4.1. Reactive terms and microbial biomass dynamics 

The reactive terms, 𝑅𝕀, are dependent on the population, and kinetics of each microbial community in 

the AD. Therefore, it is important to model the dynamics of each microbial biomass, 𝐵𝑗 as given by 

Equation (4.1). 

𝑑𝐵𝑗 𝑑𝑡⁄ = 𝐷(𝐵𝑗,𝑖 − 𝐵𝑗) + 𝜇𝑗𝐵𝑗 − 𝐾𝑑,𝑗𝐵𝑗 (4.1) 

 

In literature, Equation (4.1) is developed separately for the degradation of the substrate and 

intermediate species and the formation of the different biogas species [8,117,118,120]. However, the 

various microbial species can be combined into a single model for each step in the AD (i.e. a model 

for microbes in the acidogenesis, acetogenesis, and methanogenesis steps separately) [121]. In other 

cases, a combined model for the acidogenesis-acetogenesis step and separately, for the 

methanogenesis step is used  [11,12,129]. Finally, one combined model for all microbial species in the 

AD can be used [119]. Furthermore, it should be noted that a model for microbes in the hydrolysis step 

may not be required, because this is a result of enzymatic breakdown of the feedstock [17,31,32]. 

However, some authors considered this model for this step [108].  

Having deduced 𝐵𝑗, the reactive terms, 𝑅𝕁 can be estimated in relation to the specific microbial growth 

& death rate, (𝐵𝑗 , 𝜇𝑗 & 𝐾𝑑,𝑗), and the stoichiometric yield, 𝑌𝑗 (i.e. the stoichiometric balance of 

biomass, 𝐵 and product, 𝒫 from the degraded substrate, 𝓈, i.e. 𝑌𝐵 𝓈⁄  and 𝑌𝒫 𝓈⁄ ) [5] or the reaction 

constant, 𝐾𝑗[111] – as given by Equation (4.2). 𝑌𝑗, also known as the Monod yield, relates the use of 

degradable matter, 𝓈 to microbial activities, i.e. 𝑌𝐵 𝓈⁄ = ∆𝐵 ∆𝓈⁄ , where 𝓈 = 𝑆𝑗, ℐ𝑗 & 𝒜. It also relates 

degradable matter, 𝓈 to product formation i.e., 𝑌𝒫 𝓈⁄ = ∆𝒫 ∆𝓈⁄ , where 𝒫 = ℐ𝑗, 𝒜 & 𝐺𝑗. The 

stoichiometric yield, 𝑌𝑗 was used by Kiely et al.[108],  Andrew & Graef [131] and Fedailaine et 

al.[5].While some other authors, e.g. Beschkov et al.[119], Ma et al.[111], Sbarciog et al.[129] etc. 

utilised the reaction constant, 𝐾𝑗. The exact definition of 𝐾𝑗 is unclear, it could be a product of 𝑌𝑗 and 

𝜇𝑗 , or a fitting factor, etc. Hence 𝐾𝑗 may help limit the number of parameters to be estimated, 

however, it may have a meaningless biochemical definition, especially when considered as a curve 

fitting factor.   

𝑅𝕁 = 𝑓(𝐵𝑗 , 𝜇𝑗, 𝐾𝑑,𝑗 & 𝑌𝑗)   𝑜𝑟   𝑅𝕁 = 𝑓(𝐵𝑗, 𝜇𝑗 , 𝐾𝑑,𝑗 & 𝐾𝑗) (4.2) 

 

4.2. Dynamics of temperature in anaerobic digestion 

Although temperature is an important factor in AD, it is usually incorporated into temperature 

dependent parameters and not as a dynamic/state variable in most publications on AD models 

[123,132–135] etc. However, exception to this prevailing approach are reports by Haugen et al. [109], 
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Calise et al. [136] or Alatiqi et al. [137]. A temperature model is essential for the robust evaluation of 

temperature-dependent parameters such as mass transfer coefficients, pressure, specific microbial 

growth and death rates, and physicochemical properties of fluids. The temperature model can be 

deduced via the generic energy balance, Equation (4.3). 

Input energy + Heat exchanger energy + Mixing energy + Reaction heat = Accumulation 

energy + Output energy + Water evaporation heat + Energy loss to the environment 
(4.3) 

 

4.3. Biogas formation, evolution to headspace, and discharge from the bioreactor 

Biogas is initially formed in the liquid phase before its evolution into the bioreactor gas headspace, 

Fig. 4. Hence, modelling these phenomena is important, since it enables the estimation of partial 

pressures of biogas components – especially of CO2 and H2. Specifically, CO2 partial pressure is 

necessary for the pH estimation since dissolved CO2 significantly influences the pH of the process 

[11,108,138] and high H2 partial pressure negatively affects methanogenesis [139,140]. Therefore, 

controlling the pressure of CO2 and H2 (i.e., keeping them low) in the headspace would enhance AD 

efficiency and stability via their reduced solubility in the liquid phase.   

 
Fig. 4. Illustration of anaerobic digestion in a continuous stirred tank reactor (CSTR) type 

bioreactor with material and heat transfer 

 

As regards the biogas formation rate, many authors (Andrew and Graef [131], Batstone et al.[8], 

Giovannini et al.[130], Kiely et al.[108], etc.) assumed that the gases formed are initially dissolved in 

the liquid phase as given by Equation (4.4), and then evolve based on Henry’s law, Equation (4.5) via 

the gases partial pressure, Equation (4.7) as illustrated in Fig. 5. The resulting biogas species dynamics 

in the headspace are given by Equation (4.6). Where, 𝐺𝐷,𝑗 is the dissolved biogas species, 𝑅𝐸,𝑗, the 

rate of evolution of biogas from liquid to gas phase, (𝐾𝐿𝑎)𝑗, the mass transfer coefficient, 𝐾𝐻,𝑗, 

Henry’s constant for biogas species, 𝑅, the ideal gas constant, 𝑇, the temperature of the AD, 𝑉𝐺, the 

volume of gas headspace, 𝑉𝐿, the liquid volume, 𝑑𝑛𝑗 𝑑𝑡⁄ , the molar dynamics of biogas species, 

𝑑𝑉𝐺 𝑑𝑡⁄ , the gas headspace dynamics and 𝑞𝑜,𝐺, the biogas output flowrate. In contrast, Ma et al. [111], 
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Fedailaine et al.[5], Beschkov et al.[119] and Sbarciog et al.[129] considered the direct evolution of 

the biogas, given solely by Equation (4.4) but with the dilution and evolution rate expression, (𝐷𝐺𝐷,𝑗 

and 𝑅𝐸,𝑗) = 0. Note that depending on the substrate degradation level, Σ𝑗=1
𝑛 𝑅𝐺𝑗/𝐼𝑗

, Σ𝑗=1
𝑛 𝑅𝐺𝑗/𝒜 and 

Σ𝑗=1
𝑛 𝑅𝐺𝑗/𝑆𝑗

 may be zero. Typically for SSDM, Σ𝑗=1
𝑛 𝑅𝐺𝑗/𝐼𝑗

 and Σ𝑗=1
𝑛 𝑅𝐺𝑗/𝒜 = 0, TSDM, Σ𝑗=1

𝑛 𝑅𝐺𝑗/𝐼𝑗
 and 

Σ𝑗=1
𝑛 𝑅𝐺𝑗/𝑆𝑗

= 0 and for MSDM, Σ𝑗=1
𝑛 𝑅𝐺𝑗/𝑆𝑗

= 0. 

𝑑𝐺𝐷,𝑗 𝑑𝑡⁄ = −𝐷𝐺𝐷,𝑗 + Σ𝑗=1
𝑛 𝑅𝐺𝑗/𝐼𝑗

+ Σ𝑗=1
𝑛 𝑅𝐺𝑗/𝒜 + Σ𝑗=1

𝑛 𝑅𝐺𝑗/𝑆𝑗
− 𝑅𝐸,𝑗 (4.4) 

𝑅𝐸,𝑗 = (𝐾𝐿𝑎)𝑗(𝐺𝐷𝑗 − 𝐾𝐻,𝑗𝑝𝑗) (4.5) 

𝑑𝐺𝑗 𝑑𝑡⁄ = (𝑉𝐿 𝑉𝐺⁄ )𝑅𝐸,𝑗 − (𝐺𝑗 𝑉𝐺⁄ ){𝑞𝑜,𝐺 + (𝑑𝑉𝐺 𝑑𝑡⁄ )} (4.6) 

𝑑𝑝𝑗 𝑑𝑡⁄ = (𝑅𝑇 𝑉𝐺⁄ ){𝑑𝑛𝑗 𝑑𝑡⁄ } + (𝑝𝑗 𝑉𝐺⁄ ){𝑑𝑉𝐺 𝑑𝑡⁄ } (4.7) 

 

 
Fig. 5. Interphase mass transfer of biogas from a liquid substrate; 𝐺𝑗 – j-th biogas specie, 𝐺𝐷,𝑗 – j-th 

dissolved biogas specie 

 

Mairet et al.[140] suggested that the biogas output flowrate, 𝑞𝑜,𝐺 is dependent on the headspace 

overpressure as given by Equation (4.8). Where 𝑝𝑎𝑡𝑚 is the atmospheric pressure, Σ𝑗=1
𝑛 𝑝𝑗, the total 

pressure of the process and 𝑘𝑝 , the pipe resistance coefficient (pa·m3·time-1). 

𝑞𝑜,𝐺 = 𝑘𝑝(Σ𝑗=1
𝑛 𝑝𝑗 − 𝑝𝑎𝑡𝑚)(Σ𝑗=1

𝑛 𝑝𝑗 𝑝𝑎𝑡𝑚⁄ ) (4.8) 

 

 𝐾𝐻,𝑗 estimation in AD was investigated by Oh & Martin [141]. According to the investigation, 𝐾𝐻,𝑗 

is the difference of chemical potentials, −(𝜓𝑗
𝑜−𝑣𝑎𝑝𝑜𝑢𝑟

− 𝜓𝑗
𝑜−𝑙𝑖𝑞𝑢𝑖𝑑

) of each species, 𝑗 in the liquid and 

gas phases, Equation (4.9). 

𝐾𝐻,𝑗(𝑔. 𝐿−1𝑎𝑡𝑚−1) = 𝑀𝑗𝑒𝑥𝑝 {−(𝜓𝑗
𝑜−𝑣𝑎𝑝𝑜𝑢𝑟

− 𝜓𝑗
𝑜−𝑙𝑖𝑞𝑢𝑖𝑑

) 𝑅𝑇⁄ } (4.9) 

 

Based on the temperature reference of 298K, (𝜓𝑗
𝑜−𝑣𝑎𝑝𝑜𝑢𝑟

− 𝜓𝑗
𝑜−𝑙𝑖𝑞𝑢𝑖𝑑

) of each species, 𝑗 =

𝐶𝐻4, 𝐶𝑂2 & 𝐻2 can be deduced respectively: 158.11, 75.44, and 173.7. Where 𝑅 = 0.0821 L·atm·mol-

1·K-1, 𝑀𝑗 is the molar mass of biogas species and T (K), the temperature.  

Biogas discharged from the bioreactor is usually high in water vapour (between 30 to 100g water per 

m³ gas). This results in reduced calorific value of the biogas unless the water content is reduced e.g. by 

drying [142]. Therefore, this implies the rate of consumption, formation, and evaporation of water in 

AD should be considered. Taifouris [143] developed a model to account for water in AD and Draa 

[106] considered the contribution of water vapour to the headspace or total pressure of the process. 
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The estimation of (𝐾𝐿𝑎)𝑗 in Equation (4.5) depends on the prevailing conditions in the bioreactor, for 

instance, the effect of stirring, liquid-gas interfacial area, and biogas bubbles size. A typical value of 

𝐾𝐿,𝑗 for sparged stirred fermentors and tower fermentors, is 3.5 × 10−2𝑐𝑚 · 𝑠−1 [144]. Adequate 

estimation of 𝑎𝑗 may require detailed modelling of the bubble size distribution of biogas species. The 

idea of Zuru et al.[65] and Hepworth [145] can be used to estimate the biogas bubble radius (𝑟𝐺) 

formed at depth (ℎ𝐺), and with the vapour pressure inside the bubble (𝑝𝐺) as given by Equation (4.10). 

While the Mendelson’s correlation [146] for bubble velocity and the Takahashi et al. [147] 

correlation may be utilised for the estimation of 𝑎𝑗. Furthermore, the estimation of 𝐾𝐿,𝑗 can be deduced 

via Hikita et al.[148] correlation of the Schmidt number for the desorption of gas from the free 

surface in a baffled agitated vessel under nonbubbling conditions, and the Diaz et al. correlation [149]  

for biogas diffusivity through a liquid. 

𝑝𝐺 = 𝑝𝑎𝑡𝑚 + 𝜌𝑔ℎ𝐺 + 2𝛾 𝑟𝐺⁄  (4.10) 

Where 𝑃𝑎𝑡𝑚 is the atmospheric or surrounding pressure on the liquid phase, 𝜌, the liquid density, 𝑔, 

the acceleration due to gravity, and 𝛾, the surface tension of biogas bubbles in the liquid. 

4.4. pH estimation  

The performance of AD is sensitive to changes in pH, which highlights the importance of modelling 

pH. Despite this fact, just as earlier noted for the temperature, some reports still consider pH as a 

parameter, rather than an independent or state variable [134,150,151]. Hill & Bart [11], and Kiely et 

al. [108] modelled pH comprehensively in similar procedure, Equations (4.11) - (4.14). A more 

detailed expression of Equation (4.11) is given by [152–154]. Capris & Marais [155] suggested an 

analogous approach for AD within a pH limit of 6.0 – 7.5. While the ADM1 by Batstone et al.[8] 

considered a more simplified approach based entirely on the formation and dissociation of carbonic 

acid, 𝐻2𝐶𝑂3 from 𝐶𝑂2 and 𝐻2𝑂.These pH models highlighted thus far are based on the dynamic 

model approach, and difference between them is the types of species considered in their charge 

balance (i.e. 𝐻𝐶𝑂3
−, 𝐻𝑃𝑂4

2−, 𝐻2𝑃𝑂4
−, 𝑁𝐻4

+, 𝑉𝐹𝐴+, etc.). Boutoute et al. [156] utilized another 

approach – a numerical integration method, whose detailed analysis and comparison with dynamic 

model approach has been elaborated by Campos & Flotats [153]. In Equations (4.11) - (4.14), 𝑍𝑖
+ and 

𝑍+ are the input and dynamic molar concentrations of cations not affected by biochemical reaction 

(e.g., 𝑁𝑎+, 𝐶𝑎+ etc.), [𝑁𝐻4
+], the molar concentration of ammonium as a result of this microbial 

activity and the breakdown of protein in feedstock and 𝑆𝑗, the concentration of free fatty acids (FFAs), 

VFAs and other acids (e.g., amino acid). While 𝑀𝑁𝐻4
, and 𝑀𝑠𝑗

 are the molecular weights of 

ammonium and acids. 𝑅+, the cation production rate other than ammonia and hydrogen (obtainable via 

the expression similar to Equation (4.1) [11] ) and 𝐾𝑎,𝐶𝑂2
, the dissociation constant for 

bicarbonate, 𝐻𝐶𝑂3
− based on ionic equilibrium with 𝐶𝑂2[11,108]. 

[𝐻𝐶𝑂3
−] ≅ 𝑍+ + [𝑁𝐻4

+] 𝑀𝑁𝐻4
⁄ − Σ𝑗(𝑆𝑗 𝑀𝑆𝑗

⁄ ) (4.11) 

𝑑𝑍+ 𝑑𝑡⁄ = 𝐷(𝑍𝑖
+ −  𝑍+) + 𝑅+ (4.12) 

[𝐻+]  = 𝐾𝑎,𝐶𝑂2
([𝐶𝑂2] 𝑀𝐶𝑂2

)⁄ [𝐻𝐶𝑂3
−]⁄  (4.13) 

𝑝𝐻 = − log10[𝐻+] (4.14) 

The 𝐾𝑎,𝐶𝑂2
can be deduced as proposed by Oh & Martin [141] based on ionic equilibrium with 

species, 𝑗 = 𝐶𝑂2  in AD, Equation (3.37). Where 𝒿 and 𝓀 are constituent ions of specie, 𝑗. 

𝐾𝑎,𝑗 = 𝑒𝑥𝑝 {(𝜐𝑗𝜓𝑗
𝑜 − 𝜐𝒿𝜓

𝒿
𝑜+ − 𝜐𝓀𝜓𝓀

𝑜−) 𝑅𝑇⁄ } (4.15) 
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Based on temperature reference of 298 K the summation of chemical ion potentials, (𝜐𝑗𝜓𝑗
𝑜 − 𝜐𝒿𝜓

𝒿
𝑜+ −

𝜐𝓀𝜓𝓀
𝑜−) can be deduced as, -358.83. Where 𝑅 = 0.0821 L·atm·mol-1·K-1  and T (K), the temperature. 

4.5. Influences of stirring in anaerobic digestion 

The preceding facts and models assume that the concentration and temperature of AD are 

homogeneous within the bioreactor’s coordinates, however, this is not true in practice, especially for 

large bioreactors, hence the need to discuss the effect and modelling of stirring operation. Stirring 

enhances the AD, via homogeneity in the mass transfer processes (e.g., adequate contact between 

microbes and substrate), pH and temperature, etc. Hemrajani & Tatterson [157] describes the 

dynamics of homogeneity in stirring operation. Stirring also enhances the dissolution of gas bubbles, 

prevents foaming, clogging in the bioreactor, etc. [51,53]. However, it should be noted that microbes 

are sensitive to mixing intensity and are stressed by excessive mixing [50]. Vavilin & Angelidaki 

[158] incorporated axial and radial fluid distribution (via the Navier-Stokes equation) on substrates, 

Equations (3.20, 3.21 & 3.23) and biomass, Equation (4.1) models as illustrated in Equation (4.16) to 

account for the effect of mixing. This analogy is also applicable to acetate and intermediates models, 

so 𝑐 is defined as the concentration of substrate, 𝑆𝑗, acetate, 𝒜, interme diate, ℐ𝑗 and biomass, 𝐵. 

Where 𝐷𝓈,𝑧 and 𝐷𝓈,𝑟 are diffusivities in the axial, 𝑧 and radial, 𝑟 direction of the liquid level, ℎ𝐿 and 

the radius of the bioreactor, 𝑟𝐵𝑅, and Σ𝑅𝓈 is the summation of all reactions associated with the given 𝓈. 

The Navier-Stokes equation is also applicable to the temperature dynamics. 

𝑑𝓈 𝑑𝑡⁄ = 𝐷𝓈,𝑧(𝑑2𝓈 𝑑𝑧2⁄ ) + 𝐷𝓈,𝑟[{1/𝑟}𝑑/𝑑𝑟(𝑟𝑑𝓈/𝑑𝑟)] + 𝐷(𝓈𝑖 − 𝓈) + Σ𝑅𝓈 (4.16) 

 

5. Biochemical kinetics phenomena and parameters  

Regarding Equation (3.26), the calculation of 𝑅𝕁 requires the estimation of parameters like 𝜇𝑗 , 𝐾𝑑,𝑗 

and 𝑌𝑗, which may be dependent on process factors such as concentration, pH, and temperature, as 

discussed in this section. 

5.1. Microbial activity and inhibition 

Different empirical models have been developed for microbial specific growth rate, 𝜇 based on its 

dependence on temperature, pH, concentration, etc. The Monod equation is the simplest model for 𝜇, 

other alternatives are listed in Table 3. However, microbes do not attain their full potential (i.e. 

maximum specific growth rate, 𝜇𝑚𝑎𝑥) due to inhibition, 𝐼𝑗 caused by substrate, product, pH, and 

temperature, etc., hence inhibition factors are usually incorporated into the 𝜇 model as illustrated in 

Equation (5.1), based on the Monod equation [8,22]. 

Monod model with inhibition 𝜇 = 𝜇𝑚𝑎𝑥

𝑆

𝐾𝑆 + 𝑆
Π𝑗=1

𝑛 𝐼𝑗 (5.1) 

Non-competitive inhibition 𝐼𝑗 =
1

(1 + 𝕀/𝐾𝐼,𝑗)
 (5.2) 

Competitive inhibition 𝐼𝑗 =
1

(1 + 𝕀/𝑆) 
 (5.3) 

Limitation model 𝐼𝑗 =
1

(1 + 𝐾𝐼,𝑗/𝕀)
 (5.4) 

 

Where 𝕀, is the inhibitor concentration, and 𝐾𝐼,𝑗, the inhibition constant (a measure of inhibitor 

concentration that reduces the microbial growth to 50% it’s 𝜇𝑚𝑎𝑥) of species j= substrate, product, 

and pH. The definition of 𝐼𝑗 for non-competitive and competitive inhibition parameters are given by 

Equations (5.2) and (5.3). Although there is another form of inhibition termed limitation - caused by 
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secondary substrate, Equation (5.4). An identifiable limitation in AD is that of substrate consumption 

caused by build-up of ammonia formed along with microbes synthesis [8]. Competitive inhibition 

applies to multi-substrate systems (i.e., main, and secondary substrates) e.g. (LCFA & glucose), 

(butyrate & valerate), etc. This can be modelled by combining Equations (5.1) and (5.3), or by 

Equation (5.5) [159]. In Equation (5.5), Equations (5.2), and (5.4) can be applied, to incorporate non-

competitive inhibition and limitation respectively, but not Equation (5.3). Also available is the special 

uncompetitive model, Equation (5.6) [160], for which Equations (5.2), (5.3), and (5.4) can be 

incorporated.  

Monod model with 

competitive inhibition 
𝜇𝑆 = 𝜇𝑚𝑎𝑥

𝑆

𝐾𝑆(1 + 𝕀/𝐾𝐼,𝑗) + 𝑆
Π𝑗=1

𝑛 𝐼𝑗 (5.5) 

Monod model with 

uncompetitive inhibition 
𝜇𝑆 = 𝜇𝑚𝑎𝑥

𝑆

𝐾𝑆 + 𝑆(1 + 𝕀/𝐾𝐼,𝑗)
Π𝑗=1

𝑛 𝐼𝑗 (5.6) 

 

A typical definition of inhibition factor based on the main substrate, 𝑆 (i.e., non-competitive 

inhibition, 𝑗 & 𝕀 = 𝑆), is 𝐼𝑆 = 1 (1 + 𝑆/𝐾𝐼,𝑆)⁄ . 𝐾𝐼,𝑆(𝑔 𝐿⁄ ) is the inhibition parameter. Applying the 

expression, 𝐼𝑆 to Equation (5.1), yields the Haldane (1930) model. However, not every model applies 

the substrate inhibition via the combination of Equation (5.1), and Equations (5.2) - (5.4). A simple 

modification is the Grant (1967) model. The Andrews (1968) model utilized the uncompetitive 

model, Equation (5.6) for self-induced inhibition of a substrate, i.e., 𝑗 & 𝕀 = 𝑆, so that (1 + 𝕀/𝐾𝐼,𝑗) =

(1 + 𝑆/𝐾𝐼,𝑆). The Haldane (1930) approach was adopted by the Ierusalimsky (1967) model for 

product inhibition. Alternative product inhibition approaches are the Holzberg et al. (1967) and Aiba 

et al. (1968) models. 

Table 3. Summary model for specific microbial activity  [17,19] 

Model Specific microbial activity Details 

Monod (1949) [161,162] 
𝜇 = 𝜇𝑚𝑎𝑥

𝑆

𝑘𝑠 + 𝑆
 

𝑘𝑠 is the half-saturation 

coefficient 

Moser (1958) [163,164]  
𝜇 = 𝜇𝑚𝑎𝑥

𝑆𝜑

𝑘𝑠 + 𝑆𝜑
 

 

Contois (1959) [164,165] 
𝜇 = 𝜇𝑚𝑎𝑥

𝑆 𝐵⁄

𝑘𝑐 + 𝑆 𝐵⁄
 

𝑘𝑐 is the half-saturation 

coefficient for 𝑠 𝐵⁄  

Chen and Hashimoto (1979) 

[166]  𝜇 = 𝜇𝑚𝑎𝑥

𝑆 𝑆0⁄

𝑆 𝑆0⁄ + 𝑘𝐶𝐻(1 − 𝑆 𝑆0⁄ )
 

𝑆, and 𝑆0 are the substrate 

and initial substrate 

concentration 

𝑘𝐶𝐻 is a kinetic parameter 

Bergter (1983) [167]  
𝜇 = 𝜇𝑚𝑎𝑥

𝑆

𝑘𝑠 + 𝑆
{1 − exp (−𝑡 𝜆⁄ )} 

𝜆 is the lag time of the 

process 

Mitsdoerffer (1991) [168]  

 

 

 

 

𝜇 = 𝜇𝑚𝑎𝑥

𝑆𝜑

𝑆𝜑(1 + 𝐺𝑠𝑘𝑏𝑆𝜑)
 

𝐺𝑠 is the gas production 

factor (L·g-1) 

𝑘𝑏 is a kinetic parameter 

Substrate inhibition model 

Haldane (1930) [169,170] 
𝜇 = 𝜇𝑚𝑎𝑥 (

𝑆

𝑘𝑠 + 𝑆
) (

𝑘𝐼𝑗

𝑘𝐼𝑗
+ 𝑆

) 
𝑘𝐼𝑗

 is substrate, 𝑗 = 𝑆   

inhibition parameter due 

(g·L-1) 

Andrews (1968) [171–173]  
𝜇 = 𝜇𝑚𝑎𝑥

𝑆

𝑘𝑠 + 𝑆 + 𝑆2 𝑘𝐼𝑗
⁄
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Grant (1967) [174]  
𝜇 = 𝜇𝑚𝑎𝑥

1

𝑘𝐼𝑗
+ 𝑆

 
 

Product inhibition model 

Ierusalimsky (1967) [175] 
𝜇 = 𝜇𝑚𝑎𝑥 (

𝑆

𝑘𝑠 + 𝑠
) (

𝑘𝐼𝑗

𝑘𝐼𝑗
+ 𝑆

) 
𝑘𝐼𝑗

 is the product,  𝑗 = 𝑃  

inhibition parameter (g·L-1) 

Holzberg et al. (1967) 

[176,177]  
𝜇 = 𝜇𝑚𝑎𝑥 − 𝑘1(𝑃 − 𝑘2) 

 

𝑘1 & 𝑘2 are kinetic 

parameter (g·L-1) 

Aiba et al. (1968) [178,179]  
𝜇 = 𝜇𝑚𝑎𝑥 (

𝑆

𝑘𝑠 + 𝑆
) 𝑒𝑥𝑝 (−𝑘𝐼𝑗

. 𝑃) 
𝑃 is the product 

concentration 

 

Microbes at each stage in AD perform best within certain pH ranges. Therefore, it is important to 

consider pH inhibition on microbial activity via a pH inhibition factor applicable to Equations (5.1), 

(5.5), and (5.6). Typical pH inhibition factors utilised in literature are given in Equations (5.7) – 

(5.10). 

𝐼𝑝𝐻 =
1 + 2(100.5(𝑝𝐻𝑙𝑙−𝑝𝐻𝑢𝑙))

1 + 10(𝑝𝐻−𝑝𝐻𝑢𝑙) + 10(𝑝𝐻𝑙𝑙−𝑝𝐻)
 (5.7) 

𝐼𝑝𝐻 = exp { −𝜂 (
𝑝𝐻 − 𝑝𝐻𝑢𝑙

𝑝𝐻𝑢𝑙 − 𝑝𝐻𝑙𝑙
)

2

}
𝑝𝐻 < 𝑝𝐻𝑢𝑙

𝐼𝑝𝐻 = 1, 𝑝𝐻 ≥ 𝑝𝐻𝑢𝑙
 (5.8) 

𝐼𝑝𝐻 =
[𝐻+]

𝐾[𝐻+] + [𝐻+] + [𝐻+]2 𝐾𝐼,[𝐻+]⁄
 (5.9) 

𝐼𝑝𝐻 =
𝐾𝑝𝐻

𝜑

𝐾𝑝𝐻
𝜑

+ [𝐻+]𝜑
; 𝜑 =

𝜂

𝑝𝐻𝑢𝑙 − 𝑝𝐻𝑙𝑙
; 𝐾𝑝𝐻 = 100.5(𝑝𝐻𝑢𝑙−𝑝𝐻𝑙𝑙) (5.10) 

 

Where 𝑝𝐻𝑢𝑙 and 𝑝𝐻𝑙𝑙 are the upper and lower 𝑝𝐻 limits at which microbes are inhibited, and 𝜂 is a 

constant. Zwietering et al.[180] and Batstone et al.[8] suggested, 𝜂 = 3. Equation (5.8) is applicable 

for low pH (𝑝𝐻 < 𝑝𝐻𝑢𝑙), and high pH regimes 𝐼𝑝𝐻 ≅ 1, (i.e.,𝑝𝐻 ≥ 𝑝𝐻𝑢𝑙), while Equations (5.7), (5.9) 

and (5.10) are applicable for both low and high pH regimes. Equation (5.9) applied by Yoon-Sun et 

al. [181] is based on the analogy of the Andrews (1968) model, Table 3. Where 𝐾𝑠,[𝐻+] is the [𝐻+] 

saturation constant and 𝐾𝐼,[𝐻+] is the [𝐻+] inhibition constant. The Hill function, Equation (5.10) is a 

non-competitive inhibition factor deduced via Equation (5.2), with [𝐻+]𝜑 = 𝕀, 𝐾𝑝𝐻
𝜑

= 𝐾𝐼,𝑗, and 𝜂, is a 

fitting constant unique to the system. This model is unpopular due to its steep variation in calculated 

pH inhibition [22].  

As an evaluatory contribution, the substrate and product inhibition effects can be assumed to be 

accounted for by pH inhibition since the AD pH is mainly influenced by substrate and product 

composition  [108,155,182]. However, this idea might be limited in processes with competitive 

substrate inhibition. 

5.2. Influences of temperature on microbial activity 

Unlike the pH inhibition approach, temperature dependence in microbial specific growth rate, 𝜇 is 

quite different, as reported by Chezeau & Vial [22] for 𝜇𝑚𝑎𝑥. Equations (5.11) - (5.14) illustrate the 

dependency of 𝜇𝑚𝑎𝑥 on temperature. In the Arrhenius model, Equation (5.11), 𝐴, is the Arrhenius 

preexponential factor, 𝑅, the ideal gas constant, ℰ, the activation energy and 𝑇, the AD temperature. 

The Ratkowsky model, Equation (5.12), 𝔸(K-1·time-1) and ℬ(K-1) are constants, while 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥 

are the minimum and maximum temperature (K) at which the reaction rate is zero. Also available is 
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the Hinshelwood model, a combination of two Arrhenius models, Equation (5.13). Where the first and 

second part of this model describe the increase and decrease of microbial activity (within certain 

temperature limits). Hashimoto et al.[183] considered a model for methanogens, 𝜇𝑚𝑎𝑥,𝑚 and 

acidogenes, 𝜇𝑚𝑎𝑥,𝑎  based on linear relationship with temperature (℃), Equation (5.14) [11]. 

Comprehensive details on microbial activity dependence on temperature were reported by Zwietering 

et al. [180]. 

𝜇𝑚𝑎𝑥 =  𝔸𝑒𝑥𝑝(− ℰ 𝑅𝑇⁄ ) (5.11) 

𝜇𝑚𝑎𝑥 = {𝔸(𝑇 − 𝑇𝑚𝑖𝑛)}2 {1 − 𝑒𝑥𝑝[ℬ(𝑇 − 𝑇𝑚𝑎𝑥)]}2 (5.12) 

𝜇𝑚𝑎𝑥 =  𝔸1𝑒𝑥𝑝(− ℰ1 𝑅𝑇⁄ ) − 𝔸2𝑒𝑥𝑝(− ℰ2 𝑅𝑇⁄ ) (5.13) 

𝜇𝑚𝑎𝑥,𝑚 = 𝜇𝑚𝑎𝑥,𝑎 = 0.013𝑇 − 0.129 (5.14) 

 

5.3. Microbial death kinetics 

In addition to microbial specific growth rate, 𝜇, death rate, 𝐾𝑑 is also applied to the microbe balance to 

prevent the overestimation of cell viability. 𝐾𝑑 is dependent on factors like temperature, final product, 

and substrate [184] as indicated by Equations (5.15) - (5.17). Where 𝐾𝑚𝐵 (time -1) and 𝑌𝐵/𝑆 are the 

maintenance coefficient, and the maximum yield of microbes on substrates. 

𝐾𝑑 = 𝔸𝑒𝑥𝑝(− 𝐸𝑎 𝑅𝑇⁄ ) (5.15) 

𝐾𝑑 = 𝔸𝑒𝑥𝑝(ℬ𝑃) (5.16) 

𝐾𝑑 = 𝐾𝑚𝐵𝑌𝐵/𝑆 (5.17) 

 

The decay coefficient (𝐾𝑑) is usually about 5% of 𝜇𝑚𝑎𝑥. It is common to ignore decay in methanogen 

growth, due to its low decay coefficient (about 1% of 𝜇𝑚𝑎𝑥) [185]. 

5.4. Theoretical estimate of microbial and biogas yield 

Microbes and biogas theoretical yield estimation for a given substrate (with known carbon, hydrogen, 

and oxygen composition) is essential to have an idea of their maximum possible AD yield. This 

estimation assumes the complete conversion of the substrate into CO2 and CH4. This enables 

comparisons between the theoretical and the experimental yields (by bottle assays) [24]. It can also be 

used to estimate  𝑅𝕁, Equation (4.2), in the absence of experimental data. The generic expressional 

statement for transformation of organic matter in AD is given by Equation (5.18) [186]. 

Organic matter + H2O + Nutrients = Microbes + Resistant organic matter + CO2 + CH4 + 

NH3 + H2S + Heat 
(5.18) 

 

5.4.1. Determination of theoretical microbes’ yield 

According to Equation (5.18), not all organic matter is biodegradable, due to the presence of non-

degradable components, inhibitory substances, operating conditions, etc. Filer et al.[53] reported that 

10% of the substrate in AD is converted into microbes and transformed into heat and that following 

the VD1 4630 guideline - when cellulose is digested in a BMP test it produces a biogas yield of at 

least 80-85% of its theoretical maximum  

The microbe yield, 𝑌𝐵 𝑆𝑗⁄  from a generic substrate, 𝐶𝕒𝐻𝕓𝑂𝕔𝑁𝕕 can be deduced from Equation (5.19), 

on the basis that the chemical composition of microbes consist of 92% 𝐶5𝐻7𝑂2𝑁 on total dry weight 

[39].  

𝐶𝕒𝐻𝕓𝑂𝕔𝑁𝕕 + (
𝕒

5
− 𝑑) 𝑁𝐻3 → (

𝕒

5
) 𝐶5𝐻7𝑂2𝑁 + (𝕔 −

2𝕒

5
) 𝐻20 + (

𝕓 − 2𝕔 − 3𝕕

2
) 𝐻2 

 

(5.19) 
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5.4.2. Determination of theoretical biogas yield 

The theoretical biogas (CH4 and CO2) yield,  𝑌𝐺 𝑆𝑗⁄  can be estimated via diverse approaches. The 

Buswell & Neave (1930) stoichiometric balance is a typical example, based on the generic substrate, 

𝐶𝕒𝐻𝕓𝑂𝕔𝑁𝕕 [186],as given by Equations (5.20) and (5.21) or (5.22). Where 𝑀𝑗 and 𝕟𝑗 are the molar 

mass (i.e., 12) and stoichiometric ratio (i.e., 𝕒)  of carbon in the specific biogas species. 

𝐶𝕒𝐻𝕓𝑂𝕔𝑁𝕕 + (
4𝕒 − 𝕓 − 2𝕔 + 3𝕕

8
) 𝐻2𝑂

→ (
4𝑎 + 𝕓 − 2𝕔 − 3𝕕

8
) 𝐶𝐻4 + (

4𝑎 − 𝕓 + 2𝕔 + 3𝕕

8
) 𝐶𝑂2 + 𝕕𝑁𝐻3 

(5.20) 

𝑌𝐺𝑗 𝑆𝑗⁄ (𝑘𝑔/𝑘𝑔) =
𝑀𝑗𝑛𝑗

(12𝕒 + 𝕓 + 16𝕔 + 14𝕕)
 (5.21) 

𝑌𝐺𝑗 𝑆𝑗⁄ (𝑚3/𝑘𝑔) =
23.415𝑛𝑗

(12𝕒 + 𝕓 + 16𝕔 + 14𝕕)
 (5.22) 

6. Hydrolysis in anaerobic digestion 

In literature reports on AD, contemplations exist on whether hydrolysis or methanogenesis is the rate-

limiting step. For example, Pavlostathis & Giraldo-Gomez [187] suggested the feedstock hydrolysis 

step as the rate-limiting step. Therefore, it is important to elaborate and develop a model for the 

hydrolysis step. Hydrolysis rate is dependent on feedstock, 𝐹 characteristics e.g., its states (liquid or 

solid), solubility, etc. Hydrolysis models can be either first-order kinetic or mechanistic based (i.e., 

surface-based, and growth-based) models [188]. 

6.1. First-order kinetic model, FKM 

The FKM assumes a linear relationship with feedstock mass, 𝑚𝐹, Equation (6.1). It was initially 

developed for particulate feedstocks, and therefore its rate and kinetic constant, 𝐾𝐹𝐻 is dependent on 

changes in particulate sizes [188,189]. When deducing 𝐾𝐹𝐻 all physical and biochemical mechanisms 

are lumped, hence not robust enough for simulation, and optimisation of the actual process. Despite 

said limitations - ADM1 [8], Lopez et al.[190], and Luo et al.[191] applied and found this model 

adequate.  

𝑑𝑚𝐹 𝑑𝑡⁄ = −𝐾𝐹𝐻𝑚𝐹 (6.1) 

6.2. Surface-based model, SBM 

This model assumes that particulate enzymes from microbe activity are present in higher amounts than 

feedstock particulates since such enzymes are attached to all available feedstock surfaces and that the 

amount of feedstock particles remains constant during hydrolysis [188]. The rate of change of 

feedstock 𝑑𝐹 𝑑𝑡⁄ , is therefore dependent on available feedstock surface, Γ(cm2), and kinetic constant, 

𝐾𝐹𝑆 (g·cm-2·time-1), Equation (6.2). The feedstock surface is assumed to peel layer by layer, Fig. 6a 

hence the SBM is also called the shrinking core model. Sanders et al.[192] found the SBM good for 

hydrolysis in AD. 

𝑑𝐹 𝑑𝑡⁄ = −𝐾𝐹𝑆Γ (6.2) 

6.3. Growth-based model, GBM 

This model applies to soluble feedstocks, as such, it is assumed that the feedstock area is infinite, and 

enzymes are assumed deficient; hence microbial activity is the hydrolysis rate-limiting factor [188]. 

The model is similar to the Michaelis-Menten kinetic, Equations (6.3) - (6.4), and resembles the 

Contois model [189,193–195]. Where 𝐾𝐸 is the enzymatic rate constant (time-1), 𝐾𝑀, the half velocity 

constant (g·L-1), and 𝐵 & 𝐸, microbes & enzymes concentration (g·L-1). Analysis of Equation (6.3) 

implies that it is a multistep model since steps for the synthesis of microbes/enzymes like Equation 

(4.1), diffusion and adsorption of enzymes into particulates need to be modelled. Vavilin et al.[194] 
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and Veluchamy & Kalamdhad [196] assumed that microbes attach to feedstock particles, produce 

enzymes in their vicinity and benefit from soluble products released. While Jain et al.[27] assumed 
microbes secrete enzymes (on their surface, 𝐸𝐵 and film around the microbe, 𝐸𝑓) and diffuse to the 

bulk liquid (i.e. 𝐸) where they are adsorbed onto or react with soluble feedstock. Analysis of these 

works indicates that the model is robust, especially for investigating whether the extracellular enzyme 

catalysed hydrolysis is the rate-limiting step in AD. 

𝐵 → 𝐸, 𝐸 + 𝐹 ⇌ 𝐸𝐹 ⇒ 𝐸 + 𝑆 (6.3) 

𝑑𝐹 𝑑𝑡⁄ = −𝐾𝐸𝐸 𝐹/(𝐾𝑀 + 𝐹)  (6.4) 

 

  

 

(a) Shrinking core model (b) Growth-based model [194] (c) Growth-based model [27]  

 

Fig. 6. Mechanism of feedstock hydrolysis in anaerobic digestion; 𝐸 – enzyme, 𝐸𝐵 – enzymes on 

microbes surface, 𝐸𝑓 – enzymes in the film around the microbe 

 

In summary, FKM and SBM are simplified and may not be adequate to investigate the rate-limiting 

step in AD, unlike GBM. However, attempts have been made to improve them, via: Incorporation of 

the non-degradable fraction, 𝜃 and the shape factor, 𝜎 of the feedstock (𝜎 is 2/3, 1/2 and 0 for 

spherical, cylindrical, and plate-form particles) to the FKM, which may result to nth-kinetic 

[25,193,194]; Incorporation of the FKM into SBM by considering hydrolysis a function of the area-

mass ratio and concentration of feedstock [197]; and consideration of a two-phase model that 

incorporates microbes kinetic into the FKM, and simultaneously consider microbes growth model like, 

Equation (4.1) [190,194,198]. 

 

7. Conclusion 

To enhance the comparison of results from biogas models, a systematic approach has been established 

to classify biogas models into: single-equation models (analytical and multi-regression, which can be 

a cumulative or dynamic model) or multi-step dynamic models (SSDM, TSDM or MSDM). Most 

single-equation models are simple, requiring limited numbers and inexpensive experiments to curve 

fit, and subsequently can be easily used for simulation and control purposes. Although they are not as 

accurate compared to the multi-step dynamic models, the resulting data (e.g., biogas production 

potential, maximum biogas production rate) are useful, and as such suitable for AD preliminary 

studies. In contrast, multi-step dynamic models are complex and accurate but require substantial 

number of input data and expensive experiments to be developed. Depending on their complexity they 

are difficult to solve and apply to control purposes - especially in the order of MSDM >TSDM > 

SSDM. The magnitude of the difference in accuracy between these models is dependent on the degree 

of AD sensitivity to the intermediates produced.  
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In addition, related phenomena like microbial kinetics, pH estimation or feedstock hydrolysis and their 

corresponding models essential for developing and implementing multi-step dynamic models were 

discussed. Since biochemical processes involved in AD are dependent on pH and temperature, these 

process conditions and their dynamics are important aspects in AD modelling. Note that these 

parameters are also important for monitoring of the AD stability and estimation of thermochemical 

properties. Deducing the pH dynamics was found to be appropriately implemented when the evolution 

of biogas from the dissolved liquid phase to gas headspace was considered. This is because it makes 

possible the deduction of dynamics for unevolved and partial pressures of evolved biogas species 

(especially CO2 and H2) vital for controlling AD pressure and stability. Another notable observation is 

that water vapour contributes to the total system pressure which highlights the need to consider 

dynamics for consumption, formation, and evaporation of water in AD. Interestingly, this phenomenon 

has not been considered in most literature, similarly as the impact of temperature. Finally, the 

possibility of inhomogeneity of concentration and AD temperature within the bioreactor substantiated 

the need to model and discuss the effect of stirring operation. Consequently, further research in AD 

modelling should consider the effect of stirring. 
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