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Abstract 

In recent years, mining informative data and discovering hidden information have become increasingly 

in demand. One of the popular means to achieve this is sequential pattern mining, which is to find 

informative patterns stored in databases. Its applications cover different areas and many methods 

have been proposed. Recently, pseudo-IDLists were proposed to improve both runtime and memory 

usage in the mining process. However, the idea cannot be directly used for sequential pattern mining 

as it only works on clickstream patterns, a more distinct type of sequential pattern. We propose 

adaptations and changes to the original idea to introduce SUI (Sequential pattern mining Using 

Indices). Comparing SUI with two other state-of-the-art algorithms on six test databases, we show that 

SUI has effective and efficient performance and memory usage. 

Keywords: Pseudo-IDList, Data-IDList,  vertical format, sequential pattern mining 

 

1. Introduction 

In this current era of the Internet, data generated from online businesses such as commercial websites 

have grown exponentially. Meaningful and useful data are usually discovered from raw data via some 

methods of automatic extraction. One form of informative data can be expressed via frequent 

patterns, and one of the effective methods to discover these is via sequential pattern mining (SPM), 

which was first presented by Agrawal and Srikant [1]. The main purpose is to find common sequential 

patterns in databases and their ratios. For example, in a supermarket transaction database, 40% of 

customers first bought ‘‘bread and butter’’, then ‘‘jam’’, and then ‘‘cheese’’. 

Many approaches have been proposed for SPM [2-4] as well as other branches of the problem such as 

SPM with constraints [5,6], high utility SPM [7-9], closed and generator SPM [10,11], and mining 

patterns in multiple sequences [12]. Their applications cover various domains, from extracting 

clickstream-type patterns [13,14] such as DNA sequences, event sequences, clickstream sequences on 

online stores, or the purchase transactions of customers [15], to learning resource recommendations 

[16]. 



Most proposed algorithms can be separated into two common groups, vertical or horizontal, 

depending on which data structure they use. SPADE [17], SPAM [18], and the recently improved 

version CM-SPADE [19] are some of the most popular algorithms in the vertical group. FreeSpan [20], 

and PrefixSpan [21] are two popular algorithms in this horizontal group. According to [17-19], the 

performance of the vertical group is overall good and generally has some advantages over the other 

groups (e.g. counting support without the need of re-scanning databases). However, data duplication 

can occur often in this group. The authors in [22] proposed the CUP algorithm to eliminate some of 

the duplicate data in the mining process. However, the original idea, which is based on pseudo-IDLists, 

only works for clickstream patterns, which are a special type of sequential pattern. In sequential 

patterns, two or more events (which are called items) can co-occur in several positions. Nonetheless, 

clickstreams do not allow such a thing to happen, as events only occur one after another. Thus, it is 

not possible to use CUP directly for sequential pattern mining. Section 4.4 gives more information 

about this matter. 

Briefly, the main contributions of this paper are as follows: 

• To exploit the idea of pseudo-IDList for SPM, changes and adaptations are proposed to the 

original CUP algorithm [22] to create the SUI algorithm. 

• To prove that SUI performs well regarding runtime and memory footprint, evaluation is 

conducted based on six test databases including three real-life and three synthetic databases. 

 

Table 1 An example of a sequential transaction database. 

 

 

 

 

 

  

This paper is an extension of work that was reported in [23], there are differences between this version 

and the one which is published in [23], as follows: 

• More detailed information (such as theorems, concepts, and proofs). Because of the page limit 

of a conference paper, we limited the amount of information that can be presented in [23]. In 

this version, we add in more details such as a related work section to help readers have an 

overview of other work, a subsection about the downward property to help readers 

understand the basic pruning technique, a more detailed section on the candidate generation 

process, the general process of SUI, and estimation of SUI's complexity compared with other 

algorithms in the same group. Additionally, we also provide theorems and lemma to prove 

that CUP does not fully work for SPM, so our adaptations and changes of the original idea are 

needed for SUI to work properly. 

• More experimental databases alongside the new scalability experiment section. In the 

conference version, we only evaluate SUI on three synthetic databases, but in this journal 

version we evaluate SUI on six databases. Additionally, we present an additional scalability 

experiment to demonstrate the efficiency, effectiveness, and scalability of SUI to a greater 

extent. 



The remainder of this paper is organized as follows. Some related work and algorithms are presented 

in Section 2. Definitions and basic concepts relating to SPM are introduced in Section 3. Our proposed 

changes, adaptations, data structures, and algorithms are also presented in Section 3. The evaluation 

and experimental results on runtime, memory footprint, and scalability are presented in Section 4. 

Lastly, our conclusions and future work are presented in Section 5. 

 

2. Related work 

The original pattern mining problem was frequent itemset mining (FIM), as proposed by Agrawal et al. 

in [24]. The problem is to find out which sets of items are usually bought together by customers 

through the recorded transactions of retail stores. Those sets of items can then be analyzed to produce 

valuable information such as association rules that can be interpreted to aid decision-making. FIM has 

many applications as well as various studies, such as [25-28]. However, FIM does not contain the 

sequential order in which the transactions are made by customers, and the order of the events or 

transactions is important to certain fields, such as intrusion detection or event log mining. Thus, in 

1995 Agrawal and Srikant [1] integrated the time order with the transactions to propose sequential 

pattern mining (SPM), which then became an important problem in the field of pattern mining. 

Some of the most well-known classical algorithms for SPM are AprioriAll [1], FreeSpan [20], PrefixSpan 

[21], SPADE [17], and SPAM [18]. They can be categorized into two groups that use two different data 

formats. The first one is the horizontal database format (Table 1), which includes AprioriAll, FreeSpan, 

and PrefixSpan. 

 

Fig. 1. Data-IDLists of frequent 1-patterns (i.e. the vertical format database). 

The other two, SPADE and SPAM, are in the vertical database format group (Fig. 1). AprioriAll [1] is 

based on the apriori property and is considered the first algorithm for mining sequential patterns. The 

property states that any frequent pattern cannot contain infrequent sub frequent patterns. The 

algorithm uses a generate-and-test approach that has multiple passes. In each pass, AprioriAll 

generates new candidates by appending previous seeds (or previously found frequent patterns) and 

scans the database for the support counts of the candidates to decide if they are frequent or not. 

FreeSpan and PrefixSpan employ a different approach from AprioriAll, one called pattern growth. The 

advantage of this approach is that it does not need to generate and test candidates that do not exist 

in databases. Both FreeSpan and PrefixSpan also use the concept of projected databases, which are 



fragments of the original databases that satisfy certain conditions. Each time a new projected database 

is created, the projected database gets smaller, the candidate patterns grow longer and the support 

counts via scanning projected databases get faster. PrefixSpan is based on FreeSpan, but it uses prefix-

projection. SPADE and SPAM transform the horizontal databases into vertical format, which consists 

of several data-IDLists. The IDLists record in which sequences and positions the patterns appear. While 

SPADE uses a list of integer values to represent those IDLists, SPAM uses arrays of bitmaps. The benefit 

of this approach is that it does not need to re-scan databases again to determine the support counts 

of patterns. IDLists also get smaller each time they are produced for longer patterns, and thus the 

process of generating those IDLists gets faster. The vertical group also has other advantages over the 

horizontal group and has better overall performance. 

PrefixSpan, SPADE, and SPAM are base algorithms that have been developed into better ones, such as 

CM-SPAM, and CM-SPADE [19]. CM-SPADE and CM-SPAM [19] use the idea of cooccurrence 

information maps, which are pre-populated frequent patterns, to help prune infrequent candidates. 

CM-SPAM and CM-SPADE are considered faster than their base algorithms, SPADE, and SPAM, 

especially CM-SPADE, according to [19]. PrefixSpan, SPADE, and SPAM are also adapted into more 

specific algorithms for more diverse problems, such as GenPrefixSpan [29] or cSPADE [30]. 

Various applications have been proposed based on SPM. In the bioinformatics field, SPM is used for 

analyzing and understanding biological data such as motif discovery with regard to DNA sequences 

[31,32]. In [32], the authors proposed the DFSG algorithm based on the characteristics of protein 

sequences. In [31], the authors proposed SPAM_SNG, extended from SPAM. The motif discovery of 

DNA sequences is similar to n-gram mining, but with a dynamic min-max gap constraint. In the security 

domain, sequential frequent patterns have been used to aid the process of intrusion detection or the 

analysis of security attacker patterns [33]. In e-learning, sequential patterns are used to help predict 

student results or learn the navigating patterns of students [34]. For event log mining, sequential 

patterns are incorporated into systems to mine interesting patterns and analyze the relevant behaviors 

of workers’ daily activities [35]. For healthcare systems, SPM is incorporated to help interactive 

visualization and on-demand analysis of clinical events of patients’ medical conditions [36]. With the 

growth of smart devices (e.g., smartphones, sensors, and portable computers) in the Internet-of-

Things (IoT) environment, the authors in [37] proposed HUSP-Spark to carry out high-utility sequential 

pattern mining for very large datasets, which are often encountered in such environments. A similar 

problem to IoT is the Internet of connected vehicles. As it includes uncertainty factors, the authors in 

[38] introduced a new type of pattern called high expected utility sequential patterns, incorporating 

both uncertainty and utility, to aid the quality evaluation of patterns. The authors then designed two 

data structures called PUL-Chain and EUL-Chain and integrated them to create the HEUSPM algorithm 

to mine high expected utility sequential patterns. 

Based on SPM, diverse problems have been proposed to fit into different criteria. To provide more 

concise representative patterns, researchers proposed the closed and generator pattern mining 

methods [11,39]. Those types of patterns allow us to generate all the frequent patterns in the 

databases. Researchers also proposed more ways to limit the patterns found, such as inter-constraint 

[6], maximal constraint [40], or gap constraint approaches [41]. Another issue is high utility SPM or 

weighted SPM. Researchers reason that each element in patterns should have different degrees of 

importance so that the patterns found can be more useful and adjusted to user preferences. They thus 

incorporated the concept of importance under the name of either high utility [42-45] or weights [46-

48]. Some works have also aimed to improve the quality of rules mined from sequential patterns [49]. 

The idea is to mine partial-order rules common among sequences instead of the strictly ordering rules. 



A more distinct problem that deviates from SPM is clickstream pattern mining (CPM), in which each 

sequence contains itemsets with only one item. In fact, some of the above-mentioned works for 

substring mining, bioinformatics, healthcare systems, event log mining, and intrusion detection are 

CPM. One disadvantage of SPM horizontal algorithms is that they can contain duplicate information 

while executing the mining processes. For example, a pattern X contains a position list <1, 4, 5, 6> 

and its super pattern Y contains a position list <4, 5, 6>, <4, 5, 6> is a sublist of <1, 4, 5, 6>, which 

is duplicate information. CUP [22] was thus recently proposed for CPM, which exploits indices to 

reduce the amount of duplicate information during the mining process. This separates the data 

structures into two types, data-IDLists and pseudo-IDLists. While the former holds the real data, the 

latter contains indices that serve to retrieve the real data based on their referenced data-IDLists. The 

related experiments show that CUP outperforms the state-of-the-art algorithms PrefixSpan and CM-

SPADE. In this paper, we extend the idea in CUP [22] to propose SUI, an algorithm for mining sequential 

patterns. 

 

3. Problem definitions 

In this section, we define the SPM problem and present basic concepts and definitions. 

Let 𝐼 = {𝑖1, 𝑖2, ..., in} be a set of integer values. Each 𝑖1 ∈ 𝐼 symbolizes an item (e.g. a pair of shoes). A 

sequence 𝑠 = < 𝐸1, 𝐸2,..., Em> (1 ≤ 𝑖 ≤ m) is a list of itemsets in an order, where an itemset 𝐸i e s is a 

subset of 𝐼 and 𝑚 is the sequence size of s. For example, let 𝐼 = {1, 2, 3, 4, 5}, two possible 3-itemsets 

can be {2, 4, 5} and {1, 2, 5}. 

When a customer purchases items in a store, a user transaction sequence is generated according to 

the customer’s orders. A sequence is enclosed with ‘‘<’’ and ‘‘>’’ symbols while ‘‘{’’ and ‘‘}’’ enclose 

an itemset. For example, < {2, 3}, {1, 2, 3}, {1, 3}> is a transaction sequence with three itemsets. <

{2, 3}, {1, 2, 3}, {1, 3}> means that a user purchased 2, and 3 together, then 1, 2, and 3, and lastly 1, 

and 3. A sequence containing l items is called an l-sequence, and l is its sequence length. For example, 

< {2, 3}, {1, 2, 3}, {1, 3}> is a 7-sequence. Let 𝑠x = < 𝑋1, 𝑋2, ..., Xn> and 𝑠y = <  𝑌1, 𝑌2, ..., 𝑌m> be two 

sequences, and 𝑛 ≤  𝑚. If there exist integers 1 < 𝑖1 ≤ 𝑖2 < ... < in < 𝑚 such that 𝑋1 ⊆ 𝑌i1, 𝑋2 ⊆ 𝑌i2, 

..., 𝑋n ⊆ 𝑌in, 𝑠y is considered a supersequence of 𝑠x or 𝑠x is considered a subsequence of 𝑠y (i.e. 𝑠x 

appears in 𝑠y). Additionally, 𝑠x ⊏ 𝑠y denotes subsequence relation. For example, < {3}, {1, 3} > is 

considered a subsequence of < {1, 3, 4}, {1, 2}, {3, 4}, {1, 2, 3}> (which is the first sequence in Table 

1). 

A list of user transaction sequences makes up a sequence database SDB = {𝑆1, 𝑆2,..., 𝑆g}. An integer 

value, which is called a transaction sequence id (tSiD), is assigned to each sequence. For example, there 

are five user transaction sequences in Table 1 in which they have TSID from one to five. If a sequence 

is a subsequence of (or appears in) one or more user transaction sequences in a database, that 

sequence is considered a pattern in that database. Let supp(s) denote the number of user transaction 

sequences in which a pattern 𝑠 appears; supp(s) is also called the support of s. Let 𝛿 be an integer 

value that denotes a minimum support threshold given by users, a frequent (sequential) pattern is a 

pattern having its support ≥ 𝛿. 

There are two types of patterns in SPM, s-extension, and 𝒊-extension. A pattern has an s-extension if 

its last itemset (i.e. the right-most itemset in that pattern) only has one item. Otherwise, if there is 

more than one item in the last itemset, the pattern has an i-extension. For example, let 𝑋 = < {2, 4}, 

{3}> and 𝑌 = < {5}, {1, 3} > be two patterns, then 𝑋 has an 𝑠-extension and 𝑌 has an 𝑖-extension. 



Let 𝑋 = <  𝑋1, 𝑋2⋯,𝑋n> and 𝑌 = <  𝑌1, 𝑌2⋯ , 𝑌m>  (𝑛 <  𝑚) be two sequences,𝑋 is a prefix of 𝑌 if 

𝑋1 =  𝑌1,𝑋2 =  𝑌2,..., 𝑋n =  𝑌n. For example, a sequence < {1} > is a prefix of < {1}, {1, 5}, {3, 4, 5} > 

and < {1}, {1, 5}, {3, 4} > is also a prefix of < {1}, {1, 5}, {3, 4, 5} >.  

Problem statement. Given a sequential database SDB and a minimum support threshold S, the goal of 

SPM is to find out all frequent patterns with supports ≥  𝑆 in SDB. 

The downward closure property states that if a sequential pattern is frequent then all of its 

subsequences must be frequent. The property implies that: (1) If a frequent pattern 𝑌 has supp(Y), ∀ 

𝑋 ⊂ 𝑌: 𝑠𝑢𝑝𝑝(𝑋) ≥  𝑠𝑢𝑝𝑝(𝑌)  ≥  𝛿; (2) Let 𝑋 be a pattern, such that 𝑋 ⊂ 𝑌. Assuming that 𝑆X is a set 

of user transaction sequences containing X and SY is a set of user transaction sequences containing Y, 

then 𝑆y is a subset of 𝑆X . In other words, if we know that a user transaction sequence contains 𝑌, we 

can infer that the transaction sequence must also contain 𝑋. However, if we are sure that a transaction 

sequence contains 𝑋, we cannot be sure that the transaction sequence contains 𝑌. For example, let 𝑋 

= < {1}, {3} >, Y = < {1,3}, {3} >, then we have 𝑆X =  {100, 200, 300, 500}, 𝑆Y =  {100, 500}, and 𝑆Y 

⊂ 𝑆X. This property is a popular strategy for filtering candidates in a lot of existing algorithms. 

Example 1. Given 𝛿 = 2 and an SDB in Table 1, the first transaction sequence (with TSID = 500) is <

{2, 3}, {1, 2, 3}, {1, 3} >. Patterns < {1, 2}, {1} > and < {2}, {1}, {1} > are both subsequences of 

transaction sequence 500 and are 3-patterns, whereas < {2, 1}, {1}, {3} > is not. Pattern < {1, 2}, 

{1} > has supp(< {1, 2}, {1} >) = 3 because it appears in transaction sequences 100, 200 and 500, 

thus it is considered frequent. Pattern < {2}, {1}, {1} > only appears in transaction sequence 500, thus 

its supp(< {2}, {1}, {1} >) = 1 < 𝛿 and it is infrequent. 

 

4. The SUI algorithm 

In this section, we present SUI (Sequential pattern mining Using Indices) and its structure. As we 

mentioned in the introduction, duplicate data often occur as a result of multiple data replication during 

the mining process. While [22] proposed an idea of pseudo-IDLists to avoid this issue for clickstream 

pattern mining, it is only partly compatible with sequential pattern mining. The reason is that 

clickstream patterns only have one item per itemset in their patterns, while sequential patterns can 

have multiple items per itemset. By the definition of sequential patterns, clickstream patterns are 

made up of multiple 1-itemsets. Thus, clickstream patterns always have s-extension but a sequential 

pattern, on the other hand, can have either s-extension or i-extension. CUP [22] is therefore only 

compatible with s-extension patterns, but not i-extension patterns. To deal with this issue, we propose 

a method (Section 4.4) to adopt this approach to sequential pattern mining. There are two different 

data structures for storing pattern information in SUI. The first one is data-IDList, where the actual 

position data of a pattern is kept. The second is pseudo-IDList, where necessary indices are kept to 

obtain the actual data from corresponding data-IDLists. Each data structure used depends on whether 

a pattern has an s-extension or an i-extension. 

 

4.1. Data-IDList 

A data-IDList [22] stores the information of a pattern's occurrences in the horizontal database. The 

positions mainly consist of information about TSIDs (identifying which transaction sequences the 

pattern appears in) and position lists (at which positions in the transaction sequences). Based on [17], 

only the positions of the last item of the sequential pattern need storing. For example, let 𝑋 = < {2, 

4}, {1} > be a sequential pattern, and 𝑌 = < {5}, {2, 4}, {3}, {1}, {1} > be a transaction sequence, the 



position list of 𝑋 in 𝑌 is <4, 5> A vertical database (Fig. 1) is basically a collection of data-IDLists. A 

data-IDList is made up of three elements 𝑃, 𝑀, and 𝑠𝑢𝑝𝑝. 

• 𝑃: the pattern. 

• 𝑀: a collection of 3-tuples {Data id, TSID, Position list}. TSID is the transaction sequence id. The 

position list contains all the positions of the pattern's last item in the transaction sequence. A 

data id value is assigned for each transaction sequence, acting as a row index for pseudo-IDList. 

Different data-IDLists can assign a different value of data id to the same transaction sequence. 

For example, the data id of transaction sequence 500 is 4 in the data-IDList of < {1} > but 5 in 

the data-IDList of < {2} >. 

• 𝑆𝑢𝑝𝑝: the support count, which is the number of rows in 𝑀. 

 

4.2. Pseudo-IDList 

In most vertical SPM algorithms, duplicate data occurs mostly when creating data-IDLists for 

descending candidate patterns. For s-extension patterns, the children's data-IDList is a part of one of 

their parents' data-IDList (Section 4.4 talks more about this). Instead of copying data to generate the 

new data-IDList, we can use indices to the original data-IDLists to retrieve the necessary information. 

Thus, pseudo-IDList [22] (e.g., Fig. 3) is proposed and instead of holding the real data, it holds all the 

necessary indices to another data-IDList to retrieve position data. It has four main elements as follows. 

• 𝑃: the pattern. 

• 𝐷𝐼𝑃 (𝑑𝑎𝑡𝑎 − 𝐼𝐷𝐿𝑖𝑠𝑡 𝑝𝑜𝑖𝑛𝑡𝑒𝑟): a pointer to a data-IDList of frequent 1-pattern which is the 

last item in 𝑃. For example, for a pattern < {1, 3}, {2} > with a pseudo-IDList, the DIP points 

to the data-IDList of 1-pattern < {2} >. 

• 𝑀: a collection of 3-tuples {Local id, Data id, Start index} that are indices. For each 

corresponding transaction sequence in the pseudo-IDList, it is assigned with an increment 

integer value called local id. The data id value matches a corresponding data id in the data-

IDList (we can think of it as a row index to data-IDList). The start index is a start index location 

in a position list, from which we can retrieve the tail sublist (Definition 1 Section 4.4). 

• 𝑆𝑢𝑝𝑝: the support count which is the number of rows in 𝑀.  



 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Data-IDLists of some frequent patterns that share prefix <{1}>. The first two < {1,2} > and < {1, 3} > have i-

extensions, and the other three, < {1}, {1} >, < {1}, {3} > and < {1, 2}, {3} > have s-extensions. 

 

4.3. Candidate generation 

Most vertical algorithms employ a generate-and-test-candidate approach, and their candidates are 

formed by combining frequent patterns with lesser length. For example, let 𝑋1 = < {1, 3}, {2}, {4} >, 

𝑋2 = < {1, 3}, {2}, {5} > be two frequent patterns which share the same 3-prefix < {1, 3}, {2} >. We 

can combine them and produce three pattern candidates, which are 𝑍2 = < {1, 3}, {2}, {4}, {5} >, 𝑍1 

= < {1, 3}, {2}, {5}, {4} >, and 𝑍3 = < {1, 3}, {2}, {4, 5} >. 𝑍1 and 𝑍2 have s-extensions and 𝑍3 has an 

i-extension. 𝑍1 and 𝑍3 have 𝑋1 as its prefix and 𝑍2 has 𝑋2 as its prefix. The candidate generation process 

can be either based on SPADE [17] or SPAM [18]. In this paper, we use the SPADE method. Briefly, 

candidates are generated according to the following rules: 

• If both parent patterns 𝑋1 and 𝑋2 have s-extensions, the number of generated candidates is 

three and they are a mix of s and i-extensions. The previous paragraph shows an example of 

this case. There is one exception when both parents are the same pattern (𝑋1 =  𝑋2), then 

there is only one s-extension candidate. For example, if 𝑋1 =  𝑋2 = < {1, 3}, {2}, {4} >, there 

is only one s-extension candidate < {1, 3}, {2}, {4}, {4} >. 

• If both have i-extensions, there is only one i-extension candidate. For example, let 𝑋1 = < {1, 

3}, {2, 3} > and 𝑋2 = < {1, 3}, {2, 4} >, the generated candidate is < {1, 3}, {2, 3, 4} >. 

• If one of the parents X1 has i-extension and the other one 𝑋2 has s-extension, there is only one 

s-extension candidate. For example, let 𝑋1 = < {1, 3}, {2, 4} > and 𝑋1 = < {1, 3}, {2}, {3} >, 

the generated candidate is < {1, 3}, {2, 4}, {3} >. 

 



 

 

 

 

 

 

Fig. 3. The respective pseudo-IDLists of s-extension patterns < {1}, {1} > and < {1}, {3} > in Fig. 2. 

 

 

4.4. Adapting pseudo-IDList for sequential pattern mining 

The idea of pseudo-IDLists is to eliminate the duplication of data for clickstream pattern mining. As 

mentioned above, a clickstream is a specific type of sequential pattern in which all itemsets contain 

only one item. In this section, we prove that pseudo-IDList works for s-extension patterns but not for 

i-extension patterns, thus making it not suitable for SPM without adjustments. Hence, we propose a 

method for adapting the idea of pseudo-IDList to work for sequential pattern mining. 

Definition 1. Let 𝑃𝐿x = <  𝑥1, 𝑥2⋯ 𝑥m>, 𝑃𝐿y = <  𝑦n, 𝑦n+1⋯ 𝑦m> be two position lists and 1 ≤  𝑛 ≤  𝑚. 

𝑃𝐿𝑦 is a tail sublist of 𝑃𝐿X if 𝑦n =  𝑥m 𝑦n+1 =  𝑥n+1, ..., 𝑦m =  𝑥m. 

For example, <4, 6> is a tail sublist of <1, 2, 4, 6> but <2, 6> is not a tail sublist of <1, 2, 4, 6>. 

Additionally, <4, 6> is also a tail sublist of itself. 

Theorem 1. Let 𝑋 and 𝑌 be two patterns having s-extensions and appearing in the same user 

transaction. If 𝑋 is a sub-pattern of 𝑌 (𝑋 ⊂ 𝑌), and the last item in 𝑋 is equal to the last item in 𝑌, then 

Y's position list is a tail sublist ofX's position list. 

Proof. Let 𝑃X be the (𝑘 − 1)-prefix of 𝑋 and Py be the (𝑘 − 1)-prefix of 𝑌, 𝑒 is the last item of 𝑋 (as well 

as 𝑌), and 𝑆 is a user transaction sequence in which 𝑋 and 𝑌 both appear. Let prefix_pos(𝑆, 𝑃X, 

start_index) be a function that returns the first position of 𝑃X (i.e. the first position of the itemset that 

contains the last item of 𝑃X in 𝑆 and satisfies the subsequence definition), and start_index is the 

position where the searching starts in 𝑆. Let include_item(i, e) be a function that returns true when 

item e is included at the ith itemset in 𝑆. 

Because 𝑋 (and 𝑌) is an s-sequence, e's position is always > prefix_pos(𝑆, 𝑃X, 0). Thus, a position list 

can be formed by first finding the first occurrence of 𝑃X in 𝑆. After this, for every position of e after 𝑃X 

in 𝑆, they form the position list. In other words, the position list can be represented as an ordered set 

with an ascending ordering of integer numbers. The position list of 𝑋 can be denoted as 𝑃𝐿X =  { 𝑖 | ∀ 

𝑖 ∈  𝑍+: include_item(𝑖, 𝑒) = true AND prefix_pos(𝑆, 𝑃X, 0) <  𝑖 < length of 𝑆}. Similarly, 𝑃𝐿Y =  {𝑖 | ∀ 

𝑖 ∈ 𝑍+: include_item(𝑖, 𝑒) = true AND prefix_pos(𝑆, 𝑃Y, 0) <  𝑖 < length of 𝑆}. 

Because 𝑋 ⊏ 𝑌 (𝑋 is a sub-pattern of 𝑌), 𝑃X ⊏ 𝑃Y, and length of 𝑃X < length of 𝑃Y, the first occurrence 

of 𝑃X always happens before or at the same location of 𝑃Y. Or in other words, pattern_pos(𝑆, 𝑃X, 0) ≤ 

pattern_pos(𝑆, 𝑃Y, 0). We can rewrite the position list of 𝑋 as: 

𝑃𝐿X = {i | ∀ i ∈ Z+: 𝑖𝑛𝑐𝑙𝑢𝑑𝑒_𝑖𝑡𝑒𝑚(i, e) = true AND [prefix_pos(𝑆, 𝑃X, 0) <  𝑖 < 𝑝𝑟𝑒𝑓𝑖𝑥_𝑝𝑜𝑠(𝑆, 𝑃Y, 0) OR 

𝑝𝑟𝑒𝑓𝑖𝑥_𝑝𝑜𝑠(𝑆, 𝑃Y, 0) <  𝑖 ≤ length of 𝑆]} 



= {𝑖 | ∀ 𝑖 ∈ 𝑍+: 𝑖𝑛𝑐𝑙𝑢𝑑𝑒_𝑖𝑡𝑒𝑚(i, e) = true AND 𝑝𝑟𝑒𝑓𝑖𝑥_𝑝𝑜𝑠(𝑆, 𝑃X, 0) <  𝑖 < 𝑝𝑟𝑒𝑓𝑖𝑥_𝑝𝑜𝑠(𝑆, 𝑃Y, 0)} ∪ {𝑖 

| ∀ 𝑖 ∈ 𝑍+: include_item(i, e) = true AND 𝑝𝑟𝑒𝑓𝑖𝑥_𝑝𝑜𝑠(𝑆, 𝑃Y, 0) <  𝑖 ≤ length of 𝑆 } 

= {𝑖 | ∀ i ∈ 𝑍+: include_item(i, e) = true AND 𝑝𝑟𝑒𝑓𝑖𝑥_𝑝𝑜𝑠(𝑆, 𝑃X, 0) <  𝑖 < 𝑝𝑟𝑒𝑓𝑖𝑥_𝑝𝑜𝑠(𝑆, 𝑃Y, 0)} ∪ PLY 

Thus, 𝑃𝐿y is a tail sublist of 𝑃𝐿X. 

Example. Let 𝑋 = < {3} > and 𝑌 = < {1,2}, {3} >, considering the position list 𝑃𝐿X = <1,3, 4> for TSID 

= 100 in X’s data-IDList and the position list 𝑃𝐿Y = <3, 4> for TSID = 100 in Y’s data-IDList. We have 𝑃𝐿Y 

= <3, 4> ⊆ 𝑃𝐿X = <1, 3, 4>, and 𝐿Y is a tail sublist of 𝐿x . 

This theorem is important for our proposed method. Because when pseudo-IDLists retrieve position 

information from data-IDList, the position information must always be tail sublists (i.e. the continuous 

array of elements from a start index to the end of a position list) as in the example above. So if s-

extension patterns do not satisfy this condition (i.e. the theorem does not hold), the idea of pseudo-

IDList does not work for our proposed method. 

Lemma 1. For every 𝑠𝑢𝑏 − 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑋 of a pattern 𝑌 (𝑋 ⊂ 𝑌), if 𝑋 and 𝑌 are both s-extensions, and 

the last item in 𝑋 is equal to the last item in Y, then every position list in Y's data-IDList is a tail sublist 

of another position list in X's data-IDList with the same TSID. 

Example. Let 𝑌 = < {1, 2}, {3}>, then all sub-patterns of Y that have s-extensions are < {1} >, < {2} >, 

< {3} >, < {1}, {3} >, and < {1}, {2} >. However, only < {1}, {3} > and < {3} > have the same last 

item {3} as 𝑌. The data-IDList of 𝑌 is shown in Fig. 2 and every position list of it is a tail sublist of either 

< {1}, {3} >, or < {3} >'s data-IDLists (Fig. 1 and Fig. 2). 

Lemma 2. For every k-pattern 𝑌 (𝑘 ≥ 2) that has an s-extension and exists in a database, there always 

exists a frequent 1-pattern X such that 𝑋 ⊂ Y and every position list in Y's data-IDList is a tail sublist of 

another position list in X's data-IDList with the same TSID. 

 

Lemma 2 is deduced directly from Lemma 1. This lemma means that data-IDLists of frequent 1-patterns 

are sufficient to provide position information for all k-patterns (𝑘 ≥ 2) that have s-extensions. We can 

thus avoid generating unnecessary data-IDLists. 

Based on the above theorem and lemmas, pseudo-IDList is proven to work on s-extension patterns. 

However, it does not work on patterns with i-extensions. This can be proved via the following counter 

example. Let 𝑋 = < {3} > and 𝑌 = < {1, 3} > be two i-extension patterns, the position list 𝑃𝐿Y = <1, 

4> for TSID = 100 in Y’s data-IDList and the position list PLX = <1, 3, 4> for TSID = 100 in X’s data-

IDList. We can see that 𝑃𝐿Y = <1, 4> ⊆ PLX = <1, 3, 4> but 𝑃𝐿y is not a tail sublist of 𝑃𝐿X. Hence, the 

idea of pseudo-IDList fails in this case. 

We propose the following changes to make the idea work for sequential pattern mining: 

 

• We use data-IDLists to directly hold the position data for i-extension patterns as pseudo-IDLists 

do not work for i-extension patterns. 

• We continue to use pseudo-IDLists for s-extensions patterns as they are proved to still work 

on them. 

 



IDList Generation In the original idea in [22], pseudo-IDLists are always produced in the IDList 

generation process because all clickstreams are s-extension patterns. 

 

 

 

 

 

Fig. 4. The data retrieval of a pseudo-IDList for pattern < {1}, {3} >. The first row in the pseudo-IDList of < {1}, {3} > 

points to the first row in data-IDList of pattern < {3} > because the data id values are both equal to 1. The start index value 

in the first row is 2, so it retrieves the continuous 𝑠𝑢𝑏 − 𝑙𝑖𝑠𝑡 <3, 4> of <1, 3, 4> (then the first row in data-IDList of <{1}, 

{3}> can be simulated based on retrieved data). Similarly, it retrieves <2>, <2> and <3> in the second, third and fifth 

rows to stimulate the other remaining rows in data-IDList of < {1}, {3} >. 

 

However, our candidate generation can produce either i-extension or s-extension candidate patterns. 

Thus, our IDList generation process needs to produce a pseudo-IDList if the candidate pattern has an 

s-extension or a data-IDList if otherwise. The process of generating pseudo-IDLists for s-extensions is 

illustrated in Algorithm 1 and the process of generating data-IDLists for i-extensions is shown in 

Algorithm 2. Note that the length of those s- and i-extension patterns must be longer than one. 

Two cases can happen in Algorithm 1 for parent patterns 𝑋 and 𝑌. If X and 𝑌 both have s-extensions, 

both 𝑋 and 𝑌’s IDLists are pseudo-IDLists. The other case is that one of them has an i-extension and 

the other one has an s-extension. In such a case, we assume that 𝑋 always has the i-extension, and 𝑌 

always has the s-extension. There are also two cases in Algorithm 2, which are X and Y are either both 

s-extensions or both i-extensions (see Fig. 4). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

To estimate SUI complexity is very complicated, however, most of the resource-consuming steps for 

vertical algorithms are in the IDList creation step. We can thus estimate how well the algorithms 

perform via the complexity of the IDList creation step. Let 𝑋 and Y be two patterns with the respective 

IDLists 𝑀X and 𝑀Y, the numbers of elements in 𝑀X and 𝑀Y are 𝑛 and 𝑚, the fastest IDList creation can 

happen when the new candidate 𝑃3 is an s-extension (Algorithm 1), which is Ω (supp(X) + supp(Y)). This 

happens when the duplication indices are all first elements in s-extension IDLists. The worst time for 

Algorithm 1 is O(supp(X) + m) when the creation process has to navigate all the elements in the IDList 

of Y. For Algorithm 2, the worst runtime has the complexity of O(𝑛 + 𝑚). Therefore, the worst case of 

the ID generation process happens when the pattern candidate is i-extension. The whole mining 

process is slowest when the database is a pure itemset database (i.e. no s-extension pattern exists in 

the database). In reality, a sequential database should contain both s-extension patterns and i-

extension patterns. Therefore, the complexity of the IDList creation of SUI would be between 

Ω(supp(X) + supp(Y)) and O(𝑛 + 𝑚). This contrasts with the general IDList creation used in other 

methods that would always take up the runtime in between Ω (supp(𝑋) + 𝑚) and O(𝑛 + 𝑚). 

 

4.5. The SUI algorithm 

The main steps of SUI’s mining process are: 

• Step 1. Scanning the whole horizontal database and gathering all frequent 1-patterns (which 

are considered frequent i-extension 1-patterns) and their data-IDLists (Section 4.1). 

• Step 2. Generating candidate patterns (which have either i-extensions, s-extensions, or both) 

by combining two k-patterns that have the same (k-1)-prefix (Section 4.3). Frequent 1-patterns 

are considered to share an empty prefix. 

• Step 3. Generating pseudo-IDLists and data-IDLists for the candidates in the previous steps, 

and checking the candidates' supports for minimum support requirement. If any candidate’s 



support <  𝛿, they are discarded. The candidate’s support can be obtained via their IDLists 

instead of scanning the whole database like in Step 1. Producing pseudo-IDLists and data-

IDLists is considered taking a large portion of the algorithm runtime. After this, we return to 

Step 2 and repeat until no candidates can be found. 

 

 

 

 

 

 

 

 

 

Fig. 5. A part of the pattern tree based on the example database. 

 

For example, assuming that we use the database SDB in Table 1 with 8 = 3. A part of the pattern tree 

is shown in Fig. 5 and the mining process executes as follows. 

Step 1. We detect the set of frequent 1-patterns {<{1} >, < {2}>, < {3}>} and their supports {4, 5, 5} 

respectively via scanning the database SDB. In this step, all pseudo-IDLists and data-IDLists for those 

frequent 1-patterns are also generated. 

Step 2. By combining < {1} > with < {1} >, < {1} > with < {2} > and < {1} > with < {3} >, we 

create a set of 2-candidates {<{1}, {1} >, < {1}, {2} >, < {1}, {3} >, < {1, 2} >, < {1, 3}>} that use 

the same 1-prefix < {1} >. 

Step 3. In this step, as < {1}, {1} >, < {1}, {2} > and < {1}, {3} > are s-extension candidates, we 

generated pseudo-IDLists for all of them. Meanwhile, < {1, 2} > and < {1, 3} > are i-extension 

candidates, so data-IDLists are generated instead. After this their supports are computed as {4, 2, 4, 4, 

4}, respectively, although candidate < {1}, {2} > is removed because its support is 2 < 𝛿 = 3 and the 

remaining candidates are frequent patterns because their supports > 𝛿 = 3. SUI then repeats step 2, 

but this time it works on the frequent 2-pattern set {<{1}, {1} >, < {1}, {3} >, < {1, 2} >, < {1, 3} >

}. The algorithm continues to repeat those steps and stops after no more candidates can be generated 

in the < {3} > branch. 

 

5. Experimental results 

We evaluate our SUI algorithm by comparing its performance and scalability to PrefixSpan [21], and 

CM-SPADE [19], which are two state-of-the-art SPM algorithms. The PrefixSpan algorithm belongs to 

the horizontal group while the CM-SPADE algorithm is in the vertical group. According to [19], both are 

very effective algorithms. All algorithms are implemented in Java, and PrefixSpan (version 2016) and 

CM-SPADE come from the SPMF package [50]. The computer used for the experiments was equipped 

with an Intel Core I7 8750H 2.2 GHz, 16 GB RAM, Windows 10 64-bit, and JDK 8. 



Three real-life databases are used, in which Kosarak and MSNBC are considered big databases and FIFA 

a medium database. MSNBC is also considered a dense database, while FIFA and Kosarak are sparser. 

They can be obtained via the following link https://www. philippe-fournier-

viger.com/spmf/index.php?link=datasets.php. Three synthetic test databases are also used for the 

experiments, C50S15T3, C150S40T2, and C200S12T5. The database C50S15T3 is considered small, 

while the other two are medium. Those synthetic databases are generated by following the standard 

generator in [1]. 

 

Table 2 Test database summary. 

 

 

 

 

 

The databases’ characteristics are summarized in Table 2. To evaluate the runtime (Fig. 6) and memory 

footprint (Fig. 7), all the mentioned algorithms are executed on six databases while the value of 8 is 

decreased. Note that we also integrate the CMAP data structure [19] and DUB heuristic [22] to prune 

candidates in SUI for optimization reasons. 

Performance comparison. Via the results in Fig. 6, SUI is seen to generally perform better than both 

PrefixSpan and CM-SPADE in terms of runtime, and the gap in runtime between those algorithms is 

larger when 8 becomes smaller. SUI’s runtime increases in a more gradual manner than the other two 

algorithms towards the smaller value of 𝛿. For example, PrefixSpan has a lower runtime than the other 

two on the C200S12T5 dataset at 𝛿 = 0.7% and 0.6%. However, because PrefixSpan has a steeper 

increase in runtime, SUI and CM-SPADE have lower runtime in the end when 𝛿 ≤ 0.5%. At 𝛿 = 0.3%, 

and SUI has the fastest runtime among the three. Even though SUI and CM-SPADE have several 

similarities in their mining process, SUI still has less runtime and a lower runtime increment rate than 

CM-SPADE. The reason can be explained via the data structure used. SUI does not have to replicate 

duplicate data multiple times in the mining process with its pseudo-IDList approach. Additionally, 

instead of storing real data, storing indices results in less memory footprint alongside performance 

advantages. Fig. 7 shows the memory consumption difference between CM-SPADE and PrefixSpan and 

SUI. CM-SPADE generally has the highest memory consumption, while SUI and PrefixSpan use lower 

amounts of memory. This means SUI is efficient in terms of runtime, while still can manage to achieve 

a low memory footprint. 

Scalability. To see how SUI scales with bigger databases, we scale up the databases by following the 

standard method in [1]. There are three parameters that we consider in the experiments, which are 

the database size (i.e. the number of transaction sequences in a database), the average sequence size 

(i.e. the average number of itemsets in transaction sequences), and the average itemset size (i.e. the 

average number of items per item-set in the database).  

  



 

Fig. 6. Runtime on six databases. 

 

The database name denotes parameters and their values as follows: 𝐶<Number of transactions in 

thou-sands>S<Average number of itemsets per transaction sequence >𝑇<Average number of items per 

itemset>. For example, C200S20T2 means it is a database generated with parameters of 200,000 

transaction sequences, 20 itemsets on average for a transaction sequence, and two items on average 

for each itemset. 

The way we carry out the scalability tests in these experiments is to increase the value of one 

parameter at a time while keeping the values of two other parameters fixed. Using C200S20T2 (Figs. 8 

and 9) and C200S10T2 (Fig. 10) as bases, we can see the growth rate of the algorithms when the 

databases scale up. When either the average sequence size or the average itemset size in a database 

increases, the database is denser. We only tested the scaling of two algorithms, SUI and PrefixSpan, 

because CM-SPADE could not run on most of the scalability databases. 8 is kept as 0.1% in all scalability 

tests. 



Generally, the runtime of SUI is lower than that of PrefixSpan. When the database sizes increase, but 

the average sequential size and average itemset size are fixed, both algorithms appear to have similar 

runtime growth rates, as shown in Fig. 8. They both grow linearly. When only the sequence size 

increases (Fig. 9), both algorithms' growth rates rise a little faster towards bigger sequence size, but 

SUI still has a smaller growth rate than PrefixS-pan. Similarly, both algorithms are also sensitive to the 

change in itemset size (Fig. 10) as the growth rate doubles when the itemset size increases from 5 to 

6. However, SUI’s growth rate is 1/4 that of PrefixSpan as SUI jumps from 5.6 to 11.3 compared with 

PrefixSpan, which jumps from 23.5 to 45.8. 

Regarding memory consumption, there are some interesting results as SUI uses more memory at first, 

but as the databases grow (i.e. when one of the parameters increases) SUI starts to use less memory. 

The growth rate for the maximum memory of SUI is a smoother and more linear, while PrefixSpan is 

steeper. We observe some sudden jumps in memory for PrefixSpan when the average sequence size 

and average itemset size change. 

The larger the databases, the more duplicate information they contain, and pseudo-IDLists eliminate 

some of this duplicate information which saves memory and reduces copying operations. 

Theoretically, the effectiveness of SUI scales with the number of s-extension patterns in the databases 

and the size of the position lists. These two factors depend on the average sequence size. The longer 

the sequence size, the longer the position lists can be for the s-extension pattern. And the more 

elements the position lists have, the more effective pseudo-IDList. This is because each position list of 

s-extension patterns with length 𝑘 (𝑘 > 2) can be produced with an index value to a position list in a 

data-IDList (as in Lemma 2). This can explain why in Fig. 9 SUI has a smoother memory growth rate 

than PrefixSpan when the average sequence size increases. The same can be seen in Fig. 10. Because 

when the average itemset size increases, it also increases the number of s-extension patterns and 

duplicate information (i.e. there are more elements) in the position lists. Thus, we can see that SUI 

deals better with denser databases. 



 

Fig. 7. Memory footprint on six databases. 

 

6. Conclusion 

SPM applications can potentially cover many domains, and many vertical algorithms have been 

proposed for the problem as well as its branches. An issue with vertical algorithms is that they can 

often produce duplicate data in their processes. Thus, the idea of pseudo-IDLists, which use indices 

instead of storing real data, is proposed in [23] to lessen the duplicate data problem. However, the 

original algorithm only works on clickstream patterns. In this paper, we proposed adaptations and 

changes in the original algorithm CUP to present SUI, an SPM algorithm that inherits the advantages 

of pseudo-IDLists. Via six test databases, SUI is shown to have better performance than both CM-SPADE 

and PrefixSpan, two efficient algorithms for SPM. 

One issue of the current pseudo-IDLists is that they cannot help with removing duplicate data for i-

extension patterns. In future work, we plan to further study this issue and propose an upgraded version 

of pseudo-IDLists so that they will fully work for both s- and i-extension patterns. Additionally, we 



would like to increase the performance of SUI via parallelism or grid computing to work on even bigger 

databases. 

 

 

Fig. 8. Increasing the number of sequences. 

 



Fig. 9. Increasing the number of average itemsets per sequence. 

 

 

Fig. 10. Increasing the number of average items in an itemset. 
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