
An efficient method for mining sequential patterns with
indices

Citation
HUYNH, Minh Huy, Loan T.T. NGUYEN, Ngoc Nam PHAM, Zuzana KOMÍNKOVÁ OPLATKOVÁ, Unil YUN,
and Bay VO. An efficient method for mining sequential patterns with indices. Knowledge-Based
Systems [online]. vol. 239, Elsevier, 2022, [cit. 2023-07-03]. ISSN 0950-7051. Available at
https://www.sciencedirect.com/science/article/pii/S0950705121010832

DOI
https://doi.org/10.1016/j.knosys.2021.107946

Permanent link
https://publikace.k.utb.cz/handle/10563/1010790

This document is the Accepted Manuscipt version of the
article that can be shared via institutional repository.

publikace.k.utb.cz

https://www.sciencedirect.com/science/article/pii/S0950705121010832
https://doi.org/10.1016/j.knosys.2021.107946
https://publikace.k.utb.cz/handle/10563/1010790
https://publikace.k.utb.cz/

An efficient method for mining sequential patterns with indices

Huy Minh Huynha, Loan T.T. Nguyenb,c, Nam Ngoc Phama, Zuzana Komínková Oplatkováa, Unil Yund,

Bay Voe, *

aFaculty of Applied Informatics, Tomas Bata University in Zlín, Nám. T.G. Masaryka 5555, Zlín, Czech

Republic

bSchool of Computer Science and Engineering, International University, Ho Chi Minh City, Viet Nam

cVietnam National University, Ho Chi Minh City, Viet Nam

dDepartment of Computer Engineering, Sejong University, Seoul, Republic of Korea

eFaculty of Information Technology, HUTECH University, Ho Chi Minh City, Viet Nam

*Corresponding author: E-mail addresses: huynh@utb.cz (H.M. Huynh), nttloan@hcmiu.edu.vn

Abstract

In recent years, mining informative data and discovering hidden information have become increasingly

in demand. One of the popular means to achieve this is sequential pattern mining, which is to find

informative patterns stored in databases. Its applications cover different areas and many methods

have been proposed. Recently, pseudo-IDLists were proposed to improve both runtime and memory

usage in the mining process. However, the idea cannot be directly used for sequential pattern mining

as it only works on clickstream patterns, a more distinct type of sequential pattern. We propose

adaptations and changes to the original idea to introduce SUI (Sequential pattern mining Using

Indices). Comparing SUI with two other state-of-the-art algorithms on six test databases, we show that

SUI has effective and efficient performance and memory usage.

Keywords: Pseudo-IDList, Data-IDList, vertical format, sequential pattern mining

1. Introduction

In this current era of the Internet, data generated from online businesses such as commercial websites

have grown exponentially. Meaningful and useful data are usually discovered from raw data via some

methods of automatic extraction. One form of informative data can be expressed via frequent

patterns, and one of the effective methods to discover these is via sequential pattern mining (SPM),

which was first presented by Agrawal and Srikant [1]. The main purpose is to find common sequential

patterns in databases and their ratios. For example, in a supermarket transaction database, 40% of

customers first bought ‘‘bread and butter’’, then ‘‘jam’’, and then ‘‘cheese’’.

Many approaches have been proposed for SPM [2-4] as well as other branches of the problem such as

SPM with constraints [5,6], high utility SPM [7-9], closed and generator SPM [10,11], and mining

patterns in multiple sequences [12]. Their applications cover various domains, from extracting

clickstream-type patterns [13,14] such as DNA sequences, event sequences, clickstream sequences on

online stores, or the purchase transactions of customers [15], to learning resource recommendations

[16].

Most proposed algorithms can be separated into two common groups, vertical or horizontal,

depending on which data structure they use. SPADE [17], SPAM [18], and the recently improved

version CM-SPADE [19] are some of the most popular algorithms in the vertical group. FreeSpan [20],

and PrefixSpan [21] are two popular algorithms in this horizontal group. According to [17-19], the

performance of the vertical group is overall good and generally has some advantages over the other

groups (e.g. counting support without the need of re-scanning databases). However, data duplication

can occur often in this group. The authors in [22] proposed the CUP algorithm to eliminate some of

the duplicate data in the mining process. However, the original idea, which is based on pseudo-IDLists,

only works for clickstream patterns, which are a special type of sequential pattern. In sequential

patterns, two or more events (which are called items) can co-occur in several positions. Nonetheless,

clickstreams do not allow such a thing to happen, as events only occur one after another. Thus, it is

not possible to use CUP directly for sequential pattern mining. Section 4.4 gives more information

about this matter.

Briefly, the main contributions of this paper are as follows:

• To exploit the idea of pseudo-IDList for SPM, changes and adaptations are proposed to the

original CUP algorithm [22] to create the SUI algorithm.

• To prove that SUI performs well regarding runtime and memory footprint, evaluation is

conducted based on six test databases including three real-life and three synthetic databases.

Table 1 An example of a sequential transaction database.

This paper is an extension of work that was reported in [23], there are differences between this version

and the one which is published in [23], as follows:

• More detailed information (such as theorems, concepts, and proofs). Because of the page limit

of a conference paper, we limited the amount of information that can be presented in [23]. In

this version, we add in more details such as a related work section to help readers have an

overview of other work, a subsection about the downward property to help readers

understand the basic pruning technique, a more detailed section on the candidate generation

process, the general process of SUI, and estimation of SUI's complexity compared with other

algorithms in the same group. Additionally, we also provide theorems and lemma to prove

that CUP does not fully work for SPM, so our adaptations and changes of the original idea are

needed for SUI to work properly.

• More experimental databases alongside the new scalability experiment section. In the

conference version, we only evaluate SUI on three synthetic databases, but in this journal

version we evaluate SUI on six databases. Additionally, we present an additional scalability

experiment to demonstrate the efficiency, effectiveness, and scalability of SUI to a greater

extent.

The remainder of this paper is organized as follows. Some related work and algorithms are presented

in Section 2. Definitions and basic concepts relating to SPM are introduced in Section 3. Our proposed

changes, adaptations, data structures, and algorithms are also presented in Section 3. The evaluation

and experimental results on runtime, memory footprint, and scalability are presented in Section 4.

Lastly, our conclusions and future work are presented in Section 5.

2. Related work

The original pattern mining problem was frequent itemset mining (FIM), as proposed by Agrawal et al.

in [24]. The problem is to find out which sets of items are usually bought together by customers

through the recorded transactions of retail stores. Those sets of items can then be analyzed to produce

valuable information such as association rules that can be interpreted to aid decision-making. FIM has

many applications as well as various studies, such as [25-28]. However, FIM does not contain the

sequential order in which the transactions are made by customers, and the order of the events or

transactions is important to certain fields, such as intrusion detection or event log mining. Thus, in

1995 Agrawal and Srikant [1] integrated the time order with the transactions to propose sequential

pattern mining (SPM), which then became an important problem in the field of pattern mining.

Some of the most well-known classical algorithms for SPM are AprioriAll [1], FreeSpan [20], PrefixSpan

[21], SPADE [17], and SPAM [18]. They can be categorized into two groups that use two different data

formats. The first one is the horizontal database format (Table 1), which includes AprioriAll, FreeSpan,

and PrefixSpan.

Fig. 1. Data-IDLists of frequent 1-patterns (i.e. the vertical format database).

The other two, SPADE and SPAM, are in the vertical database format group (Fig. 1). AprioriAll [1] is

based on the apriori property and is considered the first algorithm for mining sequential patterns. The

property states that any frequent pattern cannot contain infrequent sub frequent patterns. The

algorithm uses a generate-and-test approach that has multiple passes. In each pass, AprioriAll

generates new candidates by appending previous seeds (or previously found frequent patterns) and

scans the database for the support counts of the candidates to decide if they are frequent or not.

FreeSpan and PrefixSpan employ a different approach from AprioriAll, one called pattern growth. The

advantage of this approach is that it does not need to generate and test candidates that do not exist

in databases. Both FreeSpan and PrefixSpan also use the concept of projected databases, which are

fragments of the original databases that satisfy certain conditions. Each time a new projected database

is created, the projected database gets smaller, the candidate patterns grow longer and the support

counts via scanning projected databases get faster. PrefixSpan is based on FreeSpan, but it uses prefix-

projection. SPADE and SPAM transform the horizontal databases into vertical format, which consists

of several data-IDLists. The IDLists record in which sequences and positions the patterns appear. While

SPADE uses a list of integer values to represent those IDLists, SPAM uses arrays of bitmaps. The benefit

of this approach is that it does not need to re-scan databases again to determine the support counts

of patterns. IDLists also get smaller each time they are produced for longer patterns, and thus the

process of generating those IDLists gets faster. The vertical group also has other advantages over the

horizontal group and has better overall performance.

PrefixSpan, SPADE, and SPAM are base algorithms that have been developed into better ones, such as

CM-SPAM, and CM-SPADE [19]. CM-SPADE and CM-SPAM [19] use the idea of cooccurrence

information maps, which are pre-populated frequent patterns, to help prune infrequent candidates.

CM-SPAM and CM-SPADE are considered faster than their base algorithms, SPADE, and SPAM,

especially CM-SPADE, according to [19]. PrefixSpan, SPADE, and SPAM are also adapted into more

specific algorithms for more diverse problems, such as GenPrefixSpan [29] or cSPADE [30].

Various applications have been proposed based on SPM. In the bioinformatics field, SPM is used for

analyzing and understanding biological data such as motif discovery with regard to DNA sequences

[31,32]. In [32], the authors proposed the DFSG algorithm based on the characteristics of protein

sequences. In [31], the authors proposed SPAM_SNG, extended from SPAM. The motif discovery of

DNA sequences is similar to n-gram mining, but with a dynamic min-max gap constraint. In the security

domain, sequential frequent patterns have been used to aid the process of intrusion detection or the

analysis of security attacker patterns [33]. In e-learning, sequential patterns are used to help predict

student results or learn the navigating patterns of students [34]. For event log mining, sequential

patterns are incorporated into systems to mine interesting patterns and analyze the relevant behaviors

of workers’ daily activities [35]. For healthcare systems, SPM is incorporated to help interactive

visualization and on-demand analysis of clinical events of patients’ medical conditions [36]. With the

growth of smart devices (e.g., smartphones, sensors, and portable computers) in the Internet-of-

Things (IoT) environment, the authors in [37] proposed HUSP-Spark to carry out high-utility sequential

pattern mining for very large datasets, which are often encountered in such environments. A similar

problem to IoT is the Internet of connected vehicles. As it includes uncertainty factors, the authors in

[38] introduced a new type of pattern called high expected utility sequential patterns, incorporating

both uncertainty and utility, to aid the quality evaluation of patterns. The authors then designed two

data structures called PUL-Chain and EUL-Chain and integrated them to create the HEUSPM algorithm

to mine high expected utility sequential patterns.

Based on SPM, diverse problems have been proposed to fit into different criteria. To provide more

concise representative patterns, researchers proposed the closed and generator pattern mining

methods [11,39]. Those types of patterns allow us to generate all the frequent patterns in the

databases. Researchers also proposed more ways to limit the patterns found, such as inter-constraint

[6], maximal constraint [40], or gap constraint approaches [41]. Another issue is high utility SPM or

weighted SPM. Researchers reason that each element in patterns should have different degrees of

importance so that the patterns found can be more useful and adjusted to user preferences. They thus

incorporated the concept of importance under the name of either high utility [42-45] or weights [46-

48]. Some works have also aimed to improve the quality of rules mined from sequential patterns [49].

The idea is to mine partial-order rules common among sequences instead of the strictly ordering rules.

A more distinct problem that deviates from SPM is clickstream pattern mining (CPM), in which each

sequence contains itemsets with only one item. In fact, some of the above-mentioned works for

substring mining, bioinformatics, healthcare systems, event log mining, and intrusion detection are

CPM. One disadvantage of SPM horizontal algorithms is that they can contain duplicate information

while executing the mining processes. For example, a pattern X contains a position list <1, 4, 5, 6>

and its super pattern Y contains a position list <4, 5, 6>, <4, 5, 6> is a sublist of <1, 4, 5, 6>, which

is duplicate information. CUP [22] was thus recently proposed for CPM, which exploits indices to

reduce the amount of duplicate information during the mining process. This separates the data

structures into two types, data-IDLists and pseudo-IDLists. While the former holds the real data, the

latter contains indices that serve to retrieve the real data based on their referenced data-IDLists. The

related experiments show that CUP outperforms the state-of-the-art algorithms PrefixSpan and CM-

SPADE. In this paper, we extend the idea in CUP [22] to propose SUI, an algorithm for mining sequential

patterns.

3. Problem definitions

In this section, we define the SPM problem and present basic concepts and definitions.

Let 𝐼 = {𝑖1, 𝑖2, ..., in} be a set of integer values. Each 𝑖1 ∈ 𝐼 symbolizes an item (e.g. a pair of shoes). A

sequence 𝑠 = < 𝐸1, 𝐸2,..., Em> (1 ≤ 𝑖 ≤ m) is a list of itemsets in an order, where an itemset 𝐸i e s is a

subset of 𝐼 and 𝑚 is the sequence size of s. For example, let 𝐼 = {1, 2, 3, 4, 5}, two possible 3-itemsets

can be {2, 4, 5} and {1, 2, 5}.

When a customer purchases items in a store, a user transaction sequence is generated according to

the customer’s orders. A sequence is enclosed with ‘‘<’’ and ‘‘>’’ symbols while ‘‘{’’ and ‘‘}’’ enclose

an itemset. For example, < {2, 3}, {1, 2, 3}, {1, 3}> is a transaction sequence with three itemsets. <

{2, 3}, {1, 2, 3}, {1, 3}> means that a user purchased 2, and 3 together, then 1, 2, and 3, and lastly 1,

and 3. A sequence containing l items is called an l-sequence, and l is its sequence length. For example,

< {2, 3}, {1, 2, 3}, {1, 3}> is a 7-sequence. Let 𝑠x = < 𝑋1, 𝑋2, ..., Xn> and 𝑠y = < 𝑌1, 𝑌2, ..., 𝑌m> be two

sequences, and 𝑛 ≤ 𝑚. If there exist integers 1 < 𝑖1 ≤ 𝑖2 < ... < in < 𝑚 such that 𝑋1 ⊆ 𝑌i1, 𝑋2 ⊆ 𝑌i2,

..., 𝑋n ⊆ 𝑌in, 𝑠y is considered a supersequence of 𝑠x or 𝑠x is considered a subsequence of 𝑠y (i.e. 𝑠x

appears in 𝑠y). Additionally, 𝑠x ⊏ 𝑠y denotes subsequence relation. For example, < {3}, {1, 3} > is

considered a subsequence of < {1, 3, 4}, {1, 2}, {3, 4}, {1, 2, 3}> (which is the first sequence in Table

1).

A list of user transaction sequences makes up a sequence database SDB = {𝑆1, 𝑆2,..., 𝑆g}. An integer

value, which is called a transaction sequence id (tSiD), is assigned to each sequence. For example, there

are five user transaction sequences in Table 1 in which they have TSID from one to five. If a sequence

is a subsequence of (or appears in) one or more user transaction sequences in a database, that

sequence is considered a pattern in that database. Let supp(s) denote the number of user transaction

sequences in which a pattern 𝑠 appears; supp(s) is also called the support of s. Let 𝛿 be an integer

value that denotes a minimum support threshold given by users, a frequent (sequential) pattern is a

pattern having its support ≥ 𝛿.

There are two types of patterns in SPM, s-extension, and 𝒊-extension. A pattern has an s-extension if

its last itemset (i.e. the right-most itemset in that pattern) only has one item. Otherwise, if there is

more than one item in the last itemset, the pattern has an i-extension. For example, let 𝑋 = < {2, 4},

{3}> and 𝑌 = < {5}, {1, 3} > be two patterns, then 𝑋 has an 𝑠-extension and 𝑌 has an 𝑖-extension.

Let 𝑋 = < 𝑋1, 𝑋2⋯,𝑋n> and 𝑌 = < 𝑌1, 𝑌2⋯ , 𝑌m> (𝑛 < 𝑚) be two sequences,𝑋 is a prefix of 𝑌 if

𝑋1 = 𝑌1,𝑋2 = 𝑌2,..., 𝑋n = 𝑌n. For example, a sequence < {1} > is a prefix of < {1}, {1, 5}, {3, 4, 5} >

and < {1}, {1, 5}, {3, 4} > is also a prefix of < {1}, {1, 5}, {3, 4, 5} >.

Problem statement. Given a sequential database SDB and a minimum support threshold S, the goal of

SPM is to find out all frequent patterns with supports ≥ 𝑆 in SDB.

The downward closure property states that if a sequential pattern is frequent then all of its

subsequences must be frequent. The property implies that: (1) If a frequent pattern 𝑌 has supp(Y), ∀

𝑋 ⊂ 𝑌: 𝑠𝑢𝑝𝑝(𝑋) ≥ 𝑠𝑢𝑝𝑝(𝑌) ≥ 𝛿; (2) Let 𝑋 be a pattern, such that 𝑋 ⊂ 𝑌. Assuming that 𝑆X is a set

of user transaction sequences containing X and SY is a set of user transaction sequences containing Y,

then 𝑆y is a subset of 𝑆X . In other words, if we know that a user transaction sequence contains 𝑌, we

can infer that the transaction sequence must also contain 𝑋. However, if we are sure that a transaction

sequence contains 𝑋, we cannot be sure that the transaction sequence contains 𝑌. For example, let 𝑋

= < {1}, {3} >, Y = < {1,3}, {3} >, then we have 𝑆X = {100, 200, 300, 500}, 𝑆Y = {100, 500}, and 𝑆Y

⊂ 𝑆X. This property is a popular strategy for filtering candidates in a lot of existing algorithms.

Example 1. Given 𝛿 = 2 and an SDB in Table 1, the first transaction sequence (with TSID = 500) is <

{2, 3}, {1, 2, 3}, {1, 3} >. Patterns < {1, 2}, {1} > and < {2}, {1}, {1} > are both subsequences of

transaction sequence 500 and are 3-patterns, whereas < {2, 1}, {1}, {3} > is not. Pattern < {1, 2},

{1} > has supp(< {1, 2}, {1} >) = 3 because it appears in transaction sequences 100, 200 and 500,

thus it is considered frequent. Pattern < {2}, {1}, {1} > only appears in transaction sequence 500, thus

its supp(< {2}, {1}, {1} >) = 1 < 𝛿 and it is infrequent.

4. The SUI algorithm

In this section, we present SUI (Sequential pattern mining Using Indices) and its structure. As we

mentioned in the introduction, duplicate data often occur as a result of multiple data replication during

the mining process. While [22] proposed an idea of pseudo-IDLists to avoid this issue for clickstream

pattern mining, it is only partly compatible with sequential pattern mining. The reason is that

clickstream patterns only have one item per itemset in their patterns, while sequential patterns can

have multiple items per itemset. By the definition of sequential patterns, clickstream patterns are

made up of multiple 1-itemsets. Thus, clickstream patterns always have s-extension but a sequential

pattern, on the other hand, can have either s-extension or i-extension. CUP [22] is therefore only

compatible with s-extension patterns, but not i-extension patterns. To deal with this issue, we propose

a method (Section 4.4) to adopt this approach to sequential pattern mining. There are two different

data structures for storing pattern information in SUI. The first one is data-IDList, where the actual

position data of a pattern is kept. The second is pseudo-IDList, where necessary indices are kept to

obtain the actual data from corresponding data-IDLists. Each data structure used depends on whether

a pattern has an s-extension or an i-extension.

4.1. Data-IDList

A data-IDList [22] stores the information of a pattern's occurrences in the horizontal database. The

positions mainly consist of information about TSIDs (identifying which transaction sequences the

pattern appears in) and position lists (at which positions in the transaction sequences). Based on [17],

only the positions of the last item of the sequential pattern need storing. For example, let 𝑋 = < {2,

4}, {1} > be a sequential pattern, and 𝑌 = < {5}, {2, 4}, {3}, {1}, {1} > be a transaction sequence, the

position list of 𝑋 in 𝑌 is <4, 5> A vertical database (Fig. 1) is basically a collection of data-IDLists. A

data-IDList is made up of three elements 𝑃, 𝑀, and 𝑠𝑢𝑝𝑝.

• 𝑃: the pattern.

• 𝑀: a collection of 3-tuples {Data id, TSID, Position list}. TSID is the transaction sequence id. The

position list contains all the positions of the pattern's last item in the transaction sequence. A

data id value is assigned for each transaction sequence, acting as a row index for pseudo-IDList.

Different data-IDLists can assign a different value of data id to the same transaction sequence.

For example, the data id of transaction sequence 500 is 4 in the data-IDList of < {1} > but 5 in

the data-IDList of < {2} >.

• 𝑆𝑢𝑝𝑝: the support count, which is the number of rows in 𝑀.

4.2. Pseudo-IDList

In most vertical SPM algorithms, duplicate data occurs mostly when creating data-IDLists for

descending candidate patterns. For s-extension patterns, the children's data-IDList is a part of one of

their parents' data-IDList (Section 4.4 talks more about this). Instead of copying data to generate the

new data-IDList, we can use indices to the original data-IDLists to retrieve the necessary information.

Thus, pseudo-IDList [22] (e.g., Fig. 3) is proposed and instead of holding the real data, it holds all the

necessary indices to another data-IDList to retrieve position data. It has four main elements as follows.

• 𝑃: the pattern.

• 𝐷𝐼𝑃 (𝑑𝑎𝑡𝑎 − 𝐼𝐷𝐿𝑖𝑠𝑡 𝑝𝑜𝑖𝑛𝑡𝑒𝑟): a pointer to a data-IDList of frequent 1-pattern which is the

last item in 𝑃. For example, for a pattern < {1, 3}, {2} > with a pseudo-IDList, the DIP points

to the data-IDList of 1-pattern < {2} >.

• 𝑀: a collection of 3-tuples {Local id, Data id, Start index} that are indices. For each

corresponding transaction sequence in the pseudo-IDList, it is assigned with an increment

integer value called local id. The data id value matches a corresponding data id in the data-

IDList (we can think of it as a row index to data-IDList). The start index is a start index location

in a position list, from which we can retrieve the tail sublist (Definition 1 Section 4.4).

• 𝑆𝑢𝑝𝑝: the support count which is the number of rows in 𝑀.

Fig. 2. Data-IDLists of some frequent patterns that share prefix <{1}>. The first two < {1,2} > and < {1, 3} > have i-

extensions, and the other three, < {1}, {1} >, < {1}, {3} > and < {1, 2}, {3} > have s-extensions.

4.3. Candidate generation

Most vertical algorithms employ a generate-and-test-candidate approach, and their candidates are

formed by combining frequent patterns with lesser length. For example, let 𝑋1 = < {1, 3}, {2}, {4} >,

𝑋2 = < {1, 3}, {2}, {5} > be two frequent patterns which share the same 3-prefix < {1, 3}, {2} >. We

can combine them and produce three pattern candidates, which are 𝑍2 = < {1, 3}, {2}, {4}, {5} >, 𝑍1

= < {1, 3}, {2}, {5}, {4} >, and 𝑍3 = < {1, 3}, {2}, {4, 5} >. 𝑍1 and 𝑍2 have s-extensions and 𝑍3 has an

i-extension. 𝑍1 and 𝑍3 have 𝑋1 as its prefix and 𝑍2 has 𝑋2 as its prefix. The candidate generation process

can be either based on SPADE [17] or SPAM [18]. In this paper, we use the SPADE method. Briefly,

candidates are generated according to the following rules:

• If both parent patterns 𝑋1 and 𝑋2 have s-extensions, the number of generated candidates is

three and they are a mix of s and i-extensions. The previous paragraph shows an example of

this case. There is one exception when both parents are the same pattern (𝑋1 = 𝑋2), then

there is only one s-extension candidate. For example, if 𝑋1 = 𝑋2 = < {1, 3}, {2}, {4} >, there

is only one s-extension candidate < {1, 3}, {2}, {4}, {4} >.

• If both have i-extensions, there is only one i-extension candidate. For example, let 𝑋1 = < {1,

3}, {2, 3} > and 𝑋2 = < {1, 3}, {2, 4} >, the generated candidate is < {1, 3}, {2, 3, 4} >.

• If one of the parents X1 has i-extension and the other one 𝑋2 has s-extension, there is only one

s-extension candidate. For example, let 𝑋1 = < {1, 3}, {2, 4} > and 𝑋1 = < {1, 3}, {2}, {3} >,

the generated candidate is < {1, 3}, {2, 4}, {3} >.

Fig. 3. The respective pseudo-IDLists of s-extension patterns < {1}, {1} > and < {1}, {3} > in Fig. 2.

4.4. Adapting pseudo-IDList for sequential pattern mining

The idea of pseudo-IDLists is to eliminate the duplication of data for clickstream pattern mining. As

mentioned above, a clickstream is a specific type of sequential pattern in which all itemsets contain

only one item. In this section, we prove that pseudo-IDList works for s-extension patterns but not for

i-extension patterns, thus making it not suitable for SPM without adjustments. Hence, we propose a

method for adapting the idea of pseudo-IDList to work for sequential pattern mining.

Definition 1. Let 𝑃𝐿x = < 𝑥1, 𝑥2⋯ 𝑥m>, 𝑃𝐿y = < 𝑦n, 𝑦n+1⋯ 𝑦m> be two position lists and 1 ≤ 𝑛 ≤ 𝑚.

𝑃𝐿𝑦 is a tail sublist of 𝑃𝐿X if 𝑦n = 𝑥m 𝑦n+1 = 𝑥n+1, ..., 𝑦m = 𝑥m.

For example, <4, 6> is a tail sublist of <1, 2, 4, 6> but <2, 6> is not a tail sublist of <1, 2, 4, 6>.

Additionally, <4, 6> is also a tail sublist of itself.

Theorem 1. Let 𝑋 and 𝑌 be two patterns having s-extensions and appearing in the same user

transaction. If 𝑋 is a sub-pattern of 𝑌 (𝑋 ⊂ 𝑌), and the last item in 𝑋 is equal to the last item in 𝑌, then

Y's position list is a tail sublist ofX's position list.

Proof. Let 𝑃X be the (𝑘 − 1)-prefix of 𝑋 and Py be the (𝑘 − 1)-prefix of 𝑌, 𝑒 is the last item of 𝑋 (as well

as 𝑌), and 𝑆 is a user transaction sequence in which 𝑋 and 𝑌 both appear. Let prefix_pos(𝑆, 𝑃X,

start_index) be a function that returns the first position of 𝑃X (i.e. the first position of the itemset that

contains the last item of 𝑃X in 𝑆 and satisfies the subsequence definition), and start_index is the

position where the searching starts in 𝑆. Let include_item(i, e) be a function that returns true when

item e is included at the ith itemset in 𝑆.

Because 𝑋 (and 𝑌) is an s-sequence, e's position is always > prefix_pos(𝑆, 𝑃X, 0). Thus, a position list

can be formed by first finding the first occurrence of 𝑃X in 𝑆. After this, for every position of e after 𝑃X

in 𝑆, they form the position list. In other words, the position list can be represented as an ordered set

with an ascending ordering of integer numbers. The position list of 𝑋 can be denoted as 𝑃𝐿X = { 𝑖 | ∀

𝑖 ∈ 𝑍+: include_item(𝑖, 𝑒) = true AND prefix_pos(𝑆, 𝑃X, 0) < 𝑖 < length of 𝑆}. Similarly, 𝑃𝐿Y = {𝑖 | ∀

𝑖 ∈ 𝑍+: include_item(𝑖, 𝑒) = true AND prefix_pos(𝑆, 𝑃Y, 0) < 𝑖 < length of 𝑆}.

Because 𝑋 ⊏ 𝑌 (𝑋 is a sub-pattern of 𝑌), 𝑃X ⊏ 𝑃Y, and length of 𝑃X < length of 𝑃Y, the first occurrence

of 𝑃X always happens before or at the same location of 𝑃Y. Or in other words, pattern_pos(𝑆, 𝑃X, 0) ≤

pattern_pos(𝑆, 𝑃Y, 0). We can rewrite the position list of 𝑋 as:

𝑃𝐿X = {i | ∀ i ∈ Z+: 𝑖𝑛𝑐𝑙𝑢𝑑𝑒_𝑖𝑡𝑒𝑚(i, e) = true AND [prefix_pos(𝑆, 𝑃X, 0) < 𝑖 < 𝑝𝑟𝑒𝑓𝑖𝑥_𝑝𝑜𝑠(𝑆, 𝑃Y, 0) OR

𝑝𝑟𝑒𝑓𝑖𝑥_𝑝𝑜𝑠(𝑆, 𝑃Y, 0) < 𝑖 ≤ length of 𝑆]}

= {𝑖 | ∀ 𝑖 ∈ 𝑍+: 𝑖𝑛𝑐𝑙𝑢𝑑𝑒_𝑖𝑡𝑒𝑚(i, e) = true AND 𝑝𝑟𝑒𝑓𝑖𝑥_𝑝𝑜𝑠(𝑆, 𝑃X, 0) < 𝑖 < 𝑝𝑟𝑒𝑓𝑖𝑥_𝑝𝑜𝑠(𝑆, 𝑃Y, 0)} ∪ {𝑖

| ∀ 𝑖 ∈ 𝑍+: include_item(i, e) = true AND 𝑝𝑟𝑒𝑓𝑖𝑥_𝑝𝑜𝑠(𝑆, 𝑃Y, 0) < 𝑖 ≤ length of 𝑆 }

= {𝑖 | ∀ i ∈ 𝑍+: include_item(i, e) = true AND 𝑝𝑟𝑒𝑓𝑖𝑥_𝑝𝑜𝑠(𝑆, 𝑃X, 0) < 𝑖 < 𝑝𝑟𝑒𝑓𝑖𝑥_𝑝𝑜𝑠(𝑆, 𝑃Y, 0)} ∪ PLY

Thus, 𝑃𝐿y is a tail sublist of 𝑃𝐿X.

Example. Let 𝑋 = < {3} > and 𝑌 = < {1,2}, {3} >, considering the position list 𝑃𝐿X = <1,3, 4> for TSID

= 100 in X’s data-IDList and the position list 𝑃𝐿Y = <3, 4> for TSID = 100 in Y’s data-IDList. We have 𝑃𝐿Y

= <3, 4> ⊆ 𝑃𝐿X = <1, 3, 4>, and 𝐿Y is a tail sublist of 𝐿x .

This theorem is important for our proposed method. Because when pseudo-IDLists retrieve position

information from data-IDList, the position information must always be tail sublists (i.e. the continuous

array of elements from a start index to the end of a position list) as in the example above. So if s-

extension patterns do not satisfy this condition (i.e. the theorem does not hold), the idea of pseudo-

IDList does not work for our proposed method.

Lemma 1. For every 𝑠𝑢𝑏 − 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑋 of a pattern 𝑌 (𝑋 ⊂ 𝑌), if 𝑋 and 𝑌 are both s-extensions, and

the last item in 𝑋 is equal to the last item in Y, then every position list in Y's data-IDList is a tail sublist

of another position list in X's data-IDList with the same TSID.

Example. Let 𝑌 = < {1, 2}, {3}>, then all sub-patterns of Y that have s-extensions are < {1} >, < {2} >,

< {3} >, < {1}, {3} >, and < {1}, {2} >. However, only < {1}, {3} > and < {3} > have the same last

item {3} as 𝑌. The data-IDList of 𝑌 is shown in Fig. 2 and every position list of it is a tail sublist of either

< {1}, {3} >, or < {3} >'s data-IDLists (Fig. 1 and Fig. 2).

Lemma 2. For every k-pattern 𝑌 (𝑘 ≥ 2) that has an s-extension and exists in a database, there always

exists a frequent 1-pattern X such that 𝑋 ⊂ Y and every position list in Y's data-IDList is a tail sublist of

another position list in X's data-IDList with the same TSID.

Lemma 2 is deduced directly from Lemma 1. This lemma means that data-IDLists of frequent 1-patterns

are sufficient to provide position information for all k-patterns (𝑘 ≥ 2) that have s-extensions. We can

thus avoid generating unnecessary data-IDLists.

Based on the above theorem and lemmas, pseudo-IDList is proven to work on s-extension patterns.

However, it does not work on patterns with i-extensions. This can be proved via the following counter

example. Let 𝑋 = < {3} > and 𝑌 = < {1, 3} > be two i-extension patterns, the position list 𝑃𝐿Y = <1,

4> for TSID = 100 in Y’s data-IDList and the position list PLX = <1, 3, 4> for TSID = 100 in X’s data-

IDList. We can see that 𝑃𝐿Y = <1, 4> ⊆ PLX = <1, 3, 4> but 𝑃𝐿y is not a tail sublist of 𝑃𝐿X. Hence, the

idea of pseudo-IDList fails in this case.

We propose the following changes to make the idea work for sequential pattern mining:

• We use data-IDLists to directly hold the position data for i-extension patterns as pseudo-IDLists

do not work for i-extension patterns.

• We continue to use pseudo-IDLists for s-extensions patterns as they are proved to still work

on them.

IDList Generation In the original idea in [22], pseudo-IDLists are always produced in the IDList

generation process because all clickstreams are s-extension patterns.

Fig. 4. The data retrieval of a pseudo-IDList for pattern < {1}, {3} >. The first row in the pseudo-IDList of < {1}, {3} >

points to the first row in data-IDList of pattern < {3} > because the data id values are both equal to 1. The start index value

in the first row is 2, so it retrieves the continuous 𝑠𝑢𝑏 − 𝑙𝑖𝑠𝑡 <3, 4> of <1, 3, 4> (then the first row in data-IDList of <{1},

{3}> can be simulated based on retrieved data). Similarly, it retrieves <2>, <2> and <3> in the second, third and fifth

rows to stimulate the other remaining rows in data-IDList of < {1}, {3} >.

However, our candidate generation can produce either i-extension or s-extension candidate patterns.

Thus, our IDList generation process needs to produce a pseudo-IDList if the candidate pattern has an

s-extension or a data-IDList if otherwise. The process of generating pseudo-IDLists for s-extensions is

illustrated in Algorithm 1 and the process of generating data-IDLists for i-extensions is shown in

Algorithm 2. Note that the length of those s- and i-extension patterns must be longer than one.

Two cases can happen in Algorithm 1 for parent patterns 𝑋 and 𝑌. If X and 𝑌 both have s-extensions,

both 𝑋 and 𝑌’s IDLists are pseudo-IDLists. The other case is that one of them has an i-extension and

the other one has an s-extension. In such a case, we assume that 𝑋 always has the i-extension, and 𝑌

always has the s-extension. There are also two cases in Algorithm 2, which are X and Y are either both

s-extensions or both i-extensions (see Fig. 4).

To estimate SUI complexity is very complicated, however, most of the resource-consuming steps for

vertical algorithms are in the IDList creation step. We can thus estimate how well the algorithms

perform via the complexity of the IDList creation step. Let 𝑋 and Y be two patterns with the respective

IDLists 𝑀X and 𝑀Y, the numbers of elements in 𝑀X and 𝑀Y are 𝑛 and 𝑚, the fastest IDList creation can

happen when the new candidate 𝑃3 is an s-extension (Algorithm 1), which is Ω (supp(X) + supp(Y)). This

happens when the duplication indices are all first elements in s-extension IDLists. The worst time for

Algorithm 1 is O(supp(X) + m) when the creation process has to navigate all the elements in the IDList

of Y. For Algorithm 2, the worst runtime has the complexity of O(𝑛 + 𝑚). Therefore, the worst case of

the ID generation process happens when the pattern candidate is i-extension. The whole mining

process is slowest when the database is a pure itemset database (i.e. no s-extension pattern exists in

the database). In reality, a sequential database should contain both s-extension patterns and i-

extension patterns. Therefore, the complexity of the IDList creation of SUI would be between

Ω(supp(X) + supp(Y)) and O(𝑛 + 𝑚). This contrasts with the general IDList creation used in other

methods that would always take up the runtime in between Ω (supp(𝑋) + 𝑚) and O(𝑛 + 𝑚).

4.5. The SUI algorithm

The main steps of SUI’s mining process are:

• Step 1. Scanning the whole horizontal database and gathering all frequent 1-patterns (which

are considered frequent i-extension 1-patterns) and their data-IDLists (Section 4.1).

• Step 2. Generating candidate patterns (which have either i-extensions, s-extensions, or both)

by combining two k-patterns that have the same (k-1)-prefix (Section 4.3). Frequent 1-patterns

are considered to share an empty prefix.

• Step 3. Generating pseudo-IDLists and data-IDLists for the candidates in the previous steps,

and checking the candidates' supports for minimum support requirement. If any candidate’s

support < 𝛿, they are discarded. The candidate’s support can be obtained via their IDLists

instead of scanning the whole database like in Step 1. Producing pseudo-IDLists and data-

IDLists is considered taking a large portion of the algorithm runtime. After this, we return to

Step 2 and repeat until no candidates can be found.

Fig. 5. A part of the pattern tree based on the example database.

For example, assuming that we use the database SDB in Table 1 with 8 = 3. A part of the pattern tree

is shown in Fig. 5 and the mining process executes as follows.

Step 1. We detect the set of frequent 1-patterns {<{1} >, < {2}>, < {3}>} and their supports {4, 5, 5}

respectively via scanning the database SDB. In this step, all pseudo-IDLists and data-IDLists for those

frequent 1-patterns are also generated.

Step 2. By combining < {1} > with < {1} >, < {1} > with < {2} > and < {1} > with < {3} >, we

create a set of 2-candidates {<{1}, {1} >, < {1}, {2} >, < {1}, {3} >, < {1, 2} >, < {1, 3}>} that use

the same 1-prefix < {1} >.

Step 3. In this step, as < {1}, {1} >, < {1}, {2} > and < {1}, {3} > are s-extension candidates, we

generated pseudo-IDLists for all of them. Meanwhile, < {1, 2} > and < {1, 3} > are i-extension

candidates, so data-IDLists are generated instead. After this their supports are computed as {4, 2, 4, 4,

4}, respectively, although candidate < {1}, {2} > is removed because its support is 2 < 𝛿 = 3 and the

remaining candidates are frequent patterns because their supports > 𝛿 = 3. SUI then repeats step 2,

but this time it works on the frequent 2-pattern set {<{1}, {1} >, < {1}, {3} >, < {1, 2} >, < {1, 3} >

}. The algorithm continues to repeat those steps and stops after no more candidates can be generated

in the < {3} > branch.

5. Experimental results

We evaluate our SUI algorithm by comparing its performance and scalability to PrefixSpan [21], and

CM-SPADE [19], which are two state-of-the-art SPM algorithms. The PrefixSpan algorithm belongs to

the horizontal group while the CM-SPADE algorithm is in the vertical group. According to [19], both are

very effective algorithms. All algorithms are implemented in Java, and PrefixSpan (version 2016) and

CM-SPADE come from the SPMF package [50]. The computer used for the experiments was equipped

with an Intel Core I7 8750H 2.2 GHz, 16 GB RAM, Windows 10 64-bit, and JDK 8.

Three real-life databases are used, in which Kosarak and MSNBC are considered big databases and FIFA

a medium database. MSNBC is also considered a dense database, while FIFA and Kosarak are sparser.

They can be obtained via the following link https://www. philippe-fournier-

viger.com/spmf/index.php?link=datasets.php. Three synthetic test databases are also used for the

experiments, C50S15T3, C150S40T2, and C200S12T5. The database C50S15T3 is considered small,

while the other two are medium. Those synthetic databases are generated by following the standard

generator in [1].

Table 2 Test database summary.

The databases’ characteristics are summarized in Table 2. To evaluate the runtime (Fig. 6) and memory

footprint (Fig. 7), all the mentioned algorithms are executed on six databases while the value of 8 is

decreased. Note that we also integrate the CMAP data structure [19] and DUB heuristic [22] to prune

candidates in SUI for optimization reasons.

Performance comparison. Via the results in Fig. 6, SUI is seen to generally perform better than both

PrefixSpan and CM-SPADE in terms of runtime, and the gap in runtime between those algorithms is

larger when 8 becomes smaller. SUI’s runtime increases in a more gradual manner than the other two

algorithms towards the smaller value of 𝛿. For example, PrefixSpan has a lower runtime than the other

two on the C200S12T5 dataset at 𝛿 = 0.7% and 0.6%. However, because PrefixSpan has a steeper

increase in runtime, SUI and CM-SPADE have lower runtime in the end when 𝛿 ≤ 0.5%. At 𝛿 = 0.3%,

and SUI has the fastest runtime among the three. Even though SUI and CM-SPADE have several

similarities in their mining process, SUI still has less runtime and a lower runtime increment rate than

CM-SPADE. The reason can be explained via the data structure used. SUI does not have to replicate

duplicate data multiple times in the mining process with its pseudo-IDList approach. Additionally,

instead of storing real data, storing indices results in less memory footprint alongside performance

advantages. Fig. 7 shows the memory consumption difference between CM-SPADE and PrefixSpan and

SUI. CM-SPADE generally has the highest memory consumption, while SUI and PrefixSpan use lower

amounts of memory. This means SUI is efficient in terms of runtime, while still can manage to achieve

a low memory footprint.

Scalability. To see how SUI scales with bigger databases, we scale up the databases by following the

standard method in [1]. There are three parameters that we consider in the experiments, which are

the database size (i.e. the number of transaction sequences in a database), the average sequence size

(i.e. the average number of itemsets in transaction sequences), and the average itemset size (i.e. the

average number of items per item-set in the database).

Fig. 6. Runtime on six databases.

The database name denotes parameters and their values as follows: 𝐶<Number of transactions in

thou-sands>S<Average number of itemsets per transaction sequence >𝑇<Average number of items per

itemset>. For example, C200S20T2 means it is a database generated with parameters of 200,000

transaction sequences, 20 itemsets on average for a transaction sequence, and two items on average

for each itemset.

The way we carry out the scalability tests in these experiments is to increase the value of one

parameter at a time while keeping the values of two other parameters fixed. Using C200S20T2 (Figs. 8

and 9) and C200S10T2 (Fig. 10) as bases, we can see the growth rate of the algorithms when the

databases scale up. When either the average sequence size or the average itemset size in a database

increases, the database is denser. We only tested the scaling of two algorithms, SUI and PrefixSpan,

because CM-SPADE could not run on most of the scalability databases. 8 is kept as 0.1% in all scalability

tests.

Generally, the runtime of SUI is lower than that of PrefixSpan. When the database sizes increase, but

the average sequential size and average itemset size are fixed, both algorithms appear to have similar

runtime growth rates, as shown in Fig. 8. They both grow linearly. When only the sequence size

increases (Fig. 9), both algorithms' growth rates rise a little faster towards bigger sequence size, but

SUI still has a smaller growth rate than PrefixS-pan. Similarly, both algorithms are also sensitive to the

change in itemset size (Fig. 10) as the growth rate doubles when the itemset size increases from 5 to

6. However, SUI’s growth rate is 1/4 that of PrefixSpan as SUI jumps from 5.6 to 11.3 compared with

PrefixSpan, which jumps from 23.5 to 45.8.

Regarding memory consumption, there are some interesting results as SUI uses more memory at first,

but as the databases grow (i.e. when one of the parameters increases) SUI starts to use less memory.

The growth rate for the maximum memory of SUI is a smoother and more linear, while PrefixSpan is

steeper. We observe some sudden jumps in memory for PrefixSpan when the average sequence size

and average itemset size change.

The larger the databases, the more duplicate information they contain, and pseudo-IDLists eliminate

some of this duplicate information which saves memory and reduces copying operations.

Theoretically, the effectiveness of SUI scales with the number of s-extension patterns in the databases

and the size of the position lists. These two factors depend on the average sequence size. The longer

the sequence size, the longer the position lists can be for the s-extension pattern. And the more

elements the position lists have, the more effective pseudo-IDList. This is because each position list of

s-extension patterns with length 𝑘 (𝑘 > 2) can be produced with an index value to a position list in a

data-IDList (as in Lemma 2). This can explain why in Fig. 9 SUI has a smoother memory growth rate

than PrefixSpan when the average sequence size increases. The same can be seen in Fig. 10. Because

when the average itemset size increases, it also increases the number of s-extension patterns and

duplicate information (i.e. there are more elements) in the position lists. Thus, we can see that SUI

deals better with denser databases.

Fig. 7. Memory footprint on six databases.

6. Conclusion

SPM applications can potentially cover many domains, and many vertical algorithms have been

proposed for the problem as well as its branches. An issue with vertical algorithms is that they can

often produce duplicate data in their processes. Thus, the idea of pseudo-IDLists, which use indices

instead of storing real data, is proposed in [23] to lessen the duplicate data problem. However, the

original algorithm only works on clickstream patterns. In this paper, we proposed adaptations and

changes in the original algorithm CUP to present SUI, an SPM algorithm that inherits the advantages

of pseudo-IDLists. Via six test databases, SUI is shown to have better performance than both CM-SPADE

and PrefixSpan, two efficient algorithms for SPM.

One issue of the current pseudo-IDLists is that they cannot help with removing duplicate data for i-

extension patterns. In future work, we plan to further study this issue and propose an upgraded version

of pseudo-IDLists so that they will fully work for both s- and i-extension patterns. Additionally, we

would like to increase the performance of SUI via parallelism or grid computing to work on even bigger

databases.

Fig. 8. Increasing the number of sequences.

Fig. 9. Increasing the number of average itemsets per sequence.

Fig. 10. Increasing the number of average items in an itemset.

References

[1] R. Agrawal, R. Srikant, Mining sequential patterns, in: Proceedings of the International

Conference on Data Engineering, ICDE, 1995, pp. 3-14,

http://dx.doi.org/10.1109/ICDE.1995.380415.

[2] B. Huynh, C. Trinh, H. Huynh, T.T. Van, B. Vo, V. Snasel, An efficient approach for mining

sequential patterns using multiple threads on very large databases, Eng. Appl. Artif. Intell. 74

(2018) 242-251, http://dx.doi. org/10.1016/j.engappai.2018.06.009.

[3] W. Gan, J.C.-W. Lin, P. Fournier-Viger, H.-C. Chao, P.S. Yu, A survey of parallel sequential

pattern mining, ACM Trans. Knowl. Discov. Data. 13 (2019) 1-34,

http://dx.doi.org/10.1145/3314107.

[4] P. Fournier-Viger, J.C.W. Lin, R.U. Kiran, Y.S. Koh, R. Thomas, A survey of sequential pattern

mining, Data Sci. Pattern Recognit. 1 (2017) 54-77.

[5] T. Van, B. Vo, B. Le, Mining sequential patterns with itemset constraints, Knowl. Inf. Syst. 57

(2018) 311-330, http://dx.doi.org/10.1007/s10115-018-1161-6.

[6] T. Le, A. Nguyen, B. Huynh, B. Vo, W. Pedrycz, Mining constrained intersequence patterns : a

novel approach to cope with item constraints, Appl. Intell. 48 (2018) 1327-1343,

http://dx.doi.org/10.1007/s10489-017-1123-9.

[7] W. Gan, J.C.-W. Lin, P. Fournier-Viger, H.-C. Chao, P.S. Yu, HUOPM: High-utility occupancy

pattern mining, IEEE Trans. Cybern. 50 (2020) 1195-1208,

http://dx.doi.org/10.1109/TCYB.2019.2896267.

[8] J.C.-W. Lin, Y. Li, P. Fournier-Viger, Y. Djenouri, J. Zhang, Efficient chain structure for high-utility

sequential pattern mining, IEEE Access. 8 (2020) 40714-40722,

http://dx.doi.org/10.1109/ACCESS.2020.2976662.

[9] W. Gan, J.C.-W. Lin, J. Zhang, H.-C. Chao, H. Fujita, P.S. Yu, ProUM: Projection-based utility

mining on sequence data, Inf. Sci. (Ny). 513 (2020) 222-240,

http://dx.doi.org/10.1016/j.ins.2019.10.033.

[10] M.G.H. Al Zamil, S.M.J. Samarah, M. Rawashdeh, M.A. Hossain, An ODT-based abstraction for

mining closed sequential temporal patterns in IoT-cloud smart homes, Cluster Comput. 20

(2017) 1815-1829, http://dx. doi.org/10.1007/s10586-017-0837-0.

[11] B. Le, H. Duong, T. Truong, Fournier-Viger, FGenSM: Two efficient algorithms for mining

frequent closed and generator sequences using the local pruning strategy, Knowl. Inf. Syst. 53

(2017) 71-107, http://dx.doi.org/10. 1007/s10115-017-1032-6.

[12] P. Fournier-Viger, P. Yang, Z. Li, J.C.-W. Lin, R.U. Kiran, Discovering rare correlated periodic

patterns in multiple sequences, Data Knowl. Eng. 126 (2020) 101733,

http://dx.doi.org/10.1016/j.datak.2019.101733.

[13] B. Dalmas, P. Fournier-Viger, S. Norre, TWINCLE: A constrained sequential rule mining

algorithm for event logs, Procedia Comput. Sci. 112 (2017) 205-214,

http://dx.doi.org/10.1016/j.procs.2017.08.069.

[14] H.M. Huynh, L.T.T. Nguyen, B. Vo, Z.K. Oplatkova, T.-P. Hong, Mining clickstream patterns using

idlists, in: Conference Proceedings - IEEE International Conference on Systems, Man and

Cybernetics, 2019, http: //dx.doi.org/10.1109/SMC.2019.8914086.

[15] S.C. Hsueh, M.Y. Lin, C.L. Chen, Mining negative sequential patterns for e-commerce

recommendations, in: Proceedings of the IEEE Asia-Pacific Services Computing Conference,

APSCC, 2008, pp. 1213-1218, http://dx. doi.org/10.1109/APSCC.2008.183.

[16] J.K. Tarus, Z. Niu, A. Yousif, A hybrid knowledge-based recommender system for e-learning

based on ontology and sequential pattern mining, Futur. Gener. Comput. Syst. 72 (2017) 37-

48, http://dx.doi.org/10.1016/j. future.2017.02.049.

[17] M.J. Zaki, SPADE: An efficient algorithm for mining frequent sequences, Mach. Learn. 42 (2001)

31-60, http://dx.doi.org/10.1023/A: 1007652502315.

[18] J. Ayres, J. Flannick, J. Gehrke, T. Yiu, Sequential pattern mining using a bitmap representation,

in: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, ACM Pres, New Yorks, New York, USA, 2002, pp. 429-435,

http://dx.doi.org/10.1145/ 775047.775109.

[19] P. Fournier-Viger, A. Gomariz, M. Campos, R. Thomas, Fast vertical mining of sequential

patterns using co-occurrence information, in: Proceedings of the Pacific-Asia Conference on

Knowledge Discovery and Data Mining, 2014, pp. 40-52, http://dx.doi.org/10.1007/978-3-

319-06608-0_4.

[20] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, Freespan: Frequent pattern-projected sequential

pattern mining, in: In: Proceedings of the ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining., 2000, pp. 355-359, http://dx.doi.org/10.1145/347090.347167.

[21] J. Pei, J. Han, Q. Chen, M.-C. Hsu, B. Mortazavi-Asl, H. Pinto, U. Dayal, Prefixspan: Mining

sequential patterns efficiently by prefix-projected pattern growth, in: In: Proceedings of the

International Conference on Data Engineering, (ICDE), 2001, pp. 215-224,

http://dx.doi.org/10.1109/ICDE.

22] H.M. Huynh, L.T.T. Nguyen, B. Vo, U. Yun, .Z.K. Oplatková, T.-P. Hong, Efficient algorithms for

mining clickstream patterns using pseudo-idlists, Futur. Gener. Comput. Syst. 107 (2020) 18-

30, http://dx.doi.org/10.1016/j. future.2020.01.034.

[23] H.M. Huynh, N.N. Pham, .Z.K. Oplatková, L.T.T. Nguyen, B. Vo, Sequential pattern mining using

idlists, in: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 2020, pp. 341-353,

http://dx.doi.org/10.1007/978-3-030-63007-2_27.

[24] R. Agrawal, T. Imieliński, A. Swami, Mining association rules between sets of items in large

databases, in: : Proceedings of the ACM SIGMOD International Conference on Management of

Data., 1993, pp. 207-216, http://dx.doi.org/10.1145/170036.170072.

[25] B. Vo, L.V. Nguyen, V.V. Vu, M.T.H. Lam, T.T.M. Duong, L.T. Manh, T.T.T. Nguyen, L.T.T. Nguyen,

T.-P. Hong, Mining correlated high utility itemsets in one phase, IEEE Access. 00 (2020) 1,

http://dx.doi.org/10.1109/ACCESS. 2020.2994059.

[26] U. Yun, H. Nam, J. Kim, H. Kim, Y. Baek, J. Lee, E. Yoon, T. Truong, B. Vo, W. Pedrycz, Efficient

transaction deleting approach of pre-large based high utility pattern mining in dynamic

databases, Futur. Gener. Comput. Syst. 103 (2020) 58-78,

http://dx.doi.org/10.1016/j.future.2019.09.024.

[27] L.T.T. Nguyen, V.V. Vu, M.T.H. Lam, T.T.M. Duong, L.T. Manh, T.T.T. Nguyen, B. Vo, H. Fujita,

An efficient method for mining high utility closed itemsets, Inf. Sci. (Ny). 495 (2019) 78-99,

http://dx.doi.org/10.1016/j.ins.2019.05.006.

[28] P. Fournier-Viger, Y. Yang, J.C.-W. Lin, J. Frnda, Mining locally trending high utility itemsets, in:

Proceedings of Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2020, pp.

99-111, http://dx.doi.org/10.1007/ 978-3-030-47436-2_8.

[29] C. Antunes, A.L. Oliveira, Generalization of pattern-growth methods for sequential pattern

mining with gap constraints, in: Machine Learning and Data Mining in Pattern Recognition,

Springer Berlin Heidelberg, Berlin, Heidelberg, 2003, pp. 239-251,

http://dx.doi.org/10.1007/3-540-45065-3_ 21.

[30] M.J. Zaki, Sequence mining in categorical domains, in: Proceedings of the Ninth International

Conference on Information and Knowledge Management, CIKM ’00, ACM Press, New York,

2000, pp. 422-429, http://dx.doi. org/10.1145/354756.354849.

[31] Y.-H. Ke, J.-W. Huang, W.-C. Lin, B.P. Jaysawal, Finding possible promoter binding sites in DNA

sequences by sequential patterns mining with specific numbers of gaps, IEEE/ACM Trans.

Comput. Biol. Bioinforma. (2020) http: //dx.doi.org/10.1109/tcbb.2020.2980234.

[32] V. Liao, M.-S. Chen, Efficient mining gapped sequential patterns for motifs in biological

sequences, BMC Syst. Biol. 7 (2013) S7, http://dx.doi.org/10. 1186/1752-0509-7-S4-S7.

[33] M. D’Andreagiovanni, F. Baiardi, J. Lipilini, S. Ruggieri, F. Tonelli, Sequential pattern mining for

ICT risk assessment and management, J. Log. Algebr. Methods Program. 102 (2019) 1-16,

http://dx.doi.org/10.1016/j.jlamp.2018. 09.007.

[34] L.K.M. Poon, S.-C. Kong, M.Y.W. Wong, T.S.H. Yau, Mining sequential patterns of students’ access

on learning management system, 2017, http: //dx.doi.org/10.1007/978-3-319-61845-6_20,

Presented at the.

[35] F. Setiawan, B.N. Yahya, Improved behavior model based on sequential rule mining, Appl. Soft

Comput. J. 68 (2018) 944-960, http://dx.doi.org/10. 1016/j.asoc.2018.01.035.

[36] T. Ledieu, G. Bouzillé, E. Polard, C. Plaisant, F. Thiessard, M. Cuggia, Clinical data analytics with

time-related graphical user interfaces: Application to pharmacovigilance, Front. Pharmacol. 9

(2018) http://dx.doi.org/10.3389/ fphar.2018.00717.

[37] G. Srivastava, J.C.-W. Lin, X. Zhang, Y. Li, Large-scale high-utility sequential pattern analytics in

internet of things, IEEE Internet Things J. 8 (2021) 12669-12678,

http://dx.doi.org/10.1109/JIOT.2020.3026826.

[38] G. Srivastava, J.C.-W. Lin, A. Jolfaei, Y. Li, Y. Djenouri, Uncertain-driven analytics of sequence

data in IoCV environments, IEEE Trans. Intell. Transp. Syst. 22 (2021) 5403-5414,

http://dx.doi.org/10.1109/TITS.2020.3012387.

[39] P. Fournier-Viger, A. Gomariz, M. Šebek, M. Hlosta, VGEN: Fast vertical mining of sequential

generator patterns, in: Proceedings of the International Conference on Data Warehousing and

Knowledge Discovery, 2014, pp. 476-488, http://dx.doi.org/10.1007/978-3-319-10160-6_42.

[40] U. Yun, G. Lee, K.M. Lee, Efficient representative pattern mining based on weight and

maximality conditions, Expert Syst. 33 (2016) 439-462,

http://dx.doi.org/10.1111/exsy.12158.

[41] X. Ao, P. Luo, J. Wang, F. Zhuang, Q. He, Mining precise-positioning episode rules from event

sequences, IEEE Trans. Knowl. Data Eng. 30 (2018) 530-543,

http://dx.doi.org/10.1109/TKDE.2017.2773493.

[42] B. Zhang, J.C.W. Lin, P. Fournier-Viger, T. Li, Mining of high utility-probability sequential

patterns from uncertain databases, PLoS One (2017)

http://dx.doi.org/10.1371/journal.pone.0180931.

[43] J.C.-W. Lin, Y. Li, P. Fournier-Viger, Y. Djenouri, L.S.-L. Wang, Mining high-utility sequential

patterns from big datasets, in: 2019 IEEE International Conference on Big Data (Big Data), 2019,

pp. 2674-2680, http://dx.doi.org/ 10.1109/BigData47090.2019.9005996.

[44] W. Gan, J.C.W. Lin, J. Zhang, P. Fournier-Viger, H.C. Chao, P.S. Yu, Fast utility mining on

sequence data, IEEE Trans. Cybern. 51 (2021) http:

//dx.doi.org/10.1109/TCYB.2020.2970176.

[45] W. Gan, J.C.W. Lin, J. Zhang, H. Yin, P. Fournier-Viger, H.C. Chao, P.S. Yu, Utility mining across

multi-dimensional sequences, ACM Trans. Knowl. Discov. Data. 15 (2021)

http://dx.doi.org/10.1145/3446938.

[46] M. Patel, N. Modi, K. Passi, An effective approach for mining weighted sequential patterns, in:

Proceedings of the International Conference on Smart Trends for Information Technology and

Computer Communications, 2016, pp. 904-915, http://dx.doi.org/10.1007/978-981-10-3433-

6_108.

[47] H.M. Huynh, L.T.T. Nguyen, B. Vo, A. Nguyen, V.S. Tseng, Efficient methods for mining weighted

clickstream patterns, Expert Syst. Appl. 142 (2019) 112993,

http://dx.doi.org/10.1016/j.eswa.2019.112993.

[48] H.M. Huynh, L.T.T. Nguyen, B. Vo, .Z.K. Oplatková, P. Fournier-Viger, U. Yun, An efficient

parallel algorithm for mining weighted clickstream patterns, Inf. Sci. (Ny) 582 (2022)

http://dx.doi.org/10.1016/j.ins.2021.08.070.

[49] P. Fournier-Viger, C.W. Wu, V.S. Tseng, L. Cao, R. Nkambou, Mining partially-ordered

sequential rules common to multiple sequences, IEEE Trans. Knowl. Data Eng. 27 (2015) 2203-

2216, http://dx.doi.org/10.1109/ TKDE.2015.2405509.

[50] P. Fournier-Viger, J.C.W. Lin, A. Gomariz, T. Gueniche, A. Soltani, Z. Deng, H.T. Lam, The SPMF

open-source data mining library version 2, in: Proceedings of the Joint European Conference

on Machine Learning and Knowledge Discovery in Databases, 2016, pp. 36-40,

http://dx.doi.org/10.1007/978-3-319-46131-1_8.

