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Abstract—The application of the Robust Control Design Tool-

box for General Time Delay Systems via Structured Singular Va-

lue: Unstable Systems for the Matlab system to the unstable plant 

with time delay in numerator and denominator is described in this 

paper. The uncertain time delays are treated using multiplicative 

and quotient uncertainty. The algebraic approach part imple-

ments evolutionary algorithm Differential Migration and pole 

placement for general 3rd order system with evaluation via struc-

tured singular value. Both, D-K iteration and algebraic approach, 

implements two-degree-of-freedom feedback loop controller with 

factorization fixing internal instability. Both procedures are com-

pared in simulations for maximum and half time delay and simple 

and two-degree-of-freedom feedback loop.

Keywords—Algebraic approach, robust control, RQ-meromor-

phic functions, structured singular value, Uncertain time delay 

systems. 

I. INTRODUCTION

The paper is focused on control of uncertain time delay sys-
tems with time delay in numerator and denominator of the con-
trolled plant. This type of plants is currently solved in the ring 
of retarded quasipolynomial (RQ) meromorphic functions (see 
[11] and [12]). However, the robustness is not easy to derive 
using this approach. 

The toolbox presented in this paper implements a method 
handling the robustness and uncertainty in an easy way giving 
simple and easy to implement controllers. Typically, for a 1st

order system the controller can be described as 4th order transfer 
function compared to awkward and hard-to-implement control-
lers obtained from the design in the ring of RQ-meromorphic 
functions which can treat the uncertainty with difficulties. 

The presented method takes into account the uncertainty 
using the procedure described in [2] and [3] which fully covers 
the varying time delays and guarantees the robust stability and 
performance. In order to obtain controllers that satisfy bounded-
input bounded-output (BIBO) stability algebraic theory is used 
for pole placement. The task is accomplished via solving the 
Diophantine equation in the ring of Hurwitz-stable and proper 
rational functions (RPS). As a measure of robust stability and 
performance, structured singular value denoted μ is used (see [9]). 

Due to the multimodality of the cost function in the algebraic 
approach an algorithm of global optimization is used. For this 
task evolutionary algorithm Differential Migration (see [1]) appears 
to be one of the most effective. Therefore, its application was 
chosen together with Nelder-Mead simplex method as a tool for 
the final tune-up of the pole placement. 

As a reference method, the D-K iteration (see [5]) is imple-
mented in the toolbox with entropy, LMI or DGKF formulae as 
the options in the D-K iteration part (see [6], [7] and [8]). The 
D-K iteration controller is compared with the proposed method 
in the simulations of the response to the step of the reference 
for different values of uncertain time delays. The controllers are 
connected in simple and two-degree-of-freedom feedback loop 
(1DOF and 2DOF, see [10]) with corresponding factorization 
fixing internal instability of 2DOF feedback loop. 

The following notation is used: || � ||� denotes H� norm, 

)(��  is maximum singular value, R and Cn�m are real numbers 

and complex matrices, respectively, In is the unit matrix of 
dimension n and RPS denotes the ring of Hurwitz-stable and 
proper rational functions. 

II. PRELIMINARIES

Define ���� as a set of block diagonal matrices 
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where  S is the number of repeated scalar blocks, 
F is the number of full blocks, 
r1,	, rS and m1,	, mF are positive integers defining 
dimensions of scalar and full blocks. 

For consistency among all the dimensions, the following 
condition must be held 
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Definition 1: For M � Cn�n is μ����(M) defined as 
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If no such � � ���� exists making I – M� singular, then μ����(M) = 0. 



III. ALGEBRAIC �-SYNTHESIS

The algebraic μ-synthesis can be applied to any control pro-
blem that can be transformed to the loop in Fig. 1, where G
denotes the generalized plant, K is the controller, �del is the 
perturbation matrix, r is the reference and e is the tracking error. 

Fig. 1. Closed loop interconnection. 

For the purposes of the algebraic μ-synthesis, the MIMO 
system with l inputs and l outputs is decoupled into l identical 
SISO plants. The nominal model is defined in terms of transfer 
functions: 
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For decoupling the nominal plant Pnom (Pnom invertible), it is 
satisfactory to have the controller in the form 
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where Pxy is an element of adj[Pnom(s)] = det[Pnom(s)][Pnom(s)]–1

with the highest degree of numerator {adj[Pnom(s)] denotes ad-
jugate matrix of Pnom}. The choice of the decoupling matrix pre-
vents the controller from cancelling any poles or zeros from the 
right half-plane so that internal stability of the nominal feed-
back loop is held. The MIMO problem is reduced to finding a 
controller K(s) which is tuned via setting the poles of the nomi-
nal feedback loop with the plant 
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Define 
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Transfer function Pdec can be approximated by a system 
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which can be rewritten in terms of its coefficients and trans-
formed to the elements of RPS
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, A, B � RPS (9)

The controller K = Nk/Dk is obtained by solving the Diophan-
tine equation 

 ADk + BNk = 1 (10) 

with A, B, Dk, Nk � RPS. Equation (10) is often called the Bezout 
identity. All feedback controllers NK/DK are given by 
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where 
0kN , PS0

R�kD  are particular solutions of (10) and T is 

an arbitrary element of RPS. 

The controller K satisfying equation (10) guarantees the 
BIBO (bounded input bounded output) stability of the feedback 
loop in Fig. 2. This is a crucial point for the theorems regarding 
the structured singular value. If the BIBO stability is held, then 
the nominal model is internally stable and theorems related to 
robust stability and performance can be used. The BIBO sta-
bility also guarantees stability of ),( KGFL  making possible 

usage of performance weights with integration property im-
plying non-existence of state space solutions using DGKF 
formulae (see [6]) due to zero eigenvalues of appropriate Ha-
miltonian matrices. Such methodology results in zero steady-
state error in the feedback loop with the controller obtained as 
a solution to equation (10). This technique is neither possible in 
the scope of the standard μ-synthesis using DGKF formulae nor 
using LMI approach (see [7]) leading to numerical problems in 
most of real-world applications. 

The aim of synthesis is to design a controller which satisfies 
the condition: 
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where n + n1 + n2 is the order of the nominal feedback system, 
n1 is the order of particular solution K0, ti are arbitrary 
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 and µ���� denotes 

the structured singular value of LFT on generalized plant G and 
controller K with 
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where �del denotes the perturbation matrix and �F is a full-block 
matrix corresponding with the robust performance condition. 

Tuning parameters are positive and constrained to the real 
axis since parameters of the transfer function have to be real 
and due to the fact that non-real poles cause oscillations of the 
nominal feedback loop. 

Fig. 2. Nominal feedback loop 

A crucial problem of the cost function in (12) is the fact that 
many local extremes are present. Hence, local optimization 
does not yield a suitable or even stabilizing solution. This can 
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be overcome via evolutionary optimization which solves the 
task very efficiently. 

IV. PROBLEM FORMULATION

The problem to solve is general 1st order system with 
uncertain time delays: 
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This family of plants has uncertain retarded quasi-polynomial in 
the denominator. The delays vary in the intervals of zero to a 
predefined value representing the upper bound for each time 
delay. 

This set of plants is treated via LFT using the scheme in Fig. 3. 
The weights Wdel1 and Wdel2 are obtained from the inequalities: 
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The perturbation matrix has the form: 

�
�

�
�
�

�
�

2

1

0

0

del

del

del �
�

Δ , 11 �del� , 12 �del� , δdel1, δdel2 � C (16) 

and performance weight is a 3rd order transfer function:  
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Fig. 3. LFT model of plant 

The weights Wdel1 and Wdel2 should satisfy (15) with very 
low conservatism. 

The performance condition is of the form: 
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where S is the sensitivity function and weight W1 is designed so 
that the asymptotic tracking is achieved. 

V. PROBLEM SOLUTION

A. Structured Singular Value Framework 

The problem defined in previous section can be solved 
using interconnection in Fig. 4. Here, G denotes the generalized 
plant partitioned to
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where the block structure of G corresponds with the input and 
output variables in Fig. 1:
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Then the transfer function from d to e is the upper linear 

fractional transformation on G and �
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For stability and performance Theorem 1 and the following 
Corollary 1 hold:

Theorem 1: The loop in Fig. 4 is well-posed, internally stable 
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Proof: The proof is the same as in [4] and [9] except for the fact 
that perturbations are complex matrices which simplifies the 
proof and complies with the definition of μ (Definition 1). ■ 

Corollary 1: Closed loop in Fig. 5 is stable for all deldel Δ��

1)( �� del� , the performance condition (18) holds and 
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Fig. 4. Closed-loop interconnection for μ-synthesis

Fig. 5. Feedback loop 

The design objective is to find a stabilizing controller K such that
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is the lower linear fractional transformation on generalized 

plant G and controller K (see Fig. 4) and ��  corresponds with 

the perturbation matrix from the set Δ.
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B. Algebraic Approach

The plant for which the controller is derived is the nominal 
system:
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Nominal plant P0 can be transformed to:
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The controller is obtained as a solution to the Diophantine equa-
tion (10) with BIBO stable feedback controller Nk/Dk given by
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The denominator of (28) is divisible by s so that asymptotic 
tracking for the stepwise reference signal can be achieved.

Fig. 6. Closed loop interconnection with integrator cascade

The aim of synthesis is to design a controller which satisfies 
condition (12). The 1DOF feedback controller obtained from 
the algebraic approach has the transfer function: 
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In order to overcome the problem of non-integration structure 
of the D-K iteration controller a scheme with integrator that 
incorporates the integration property into the controller was 
used (see Fig. 6). The 1DOF feedback controller obtained from 
the D-K iteration has the transfer function:
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VI. TIME DELAY SYSTEM CONTROL FOR UNCERTAIN TIME 

DELAY IN NUMERATOR AND DENOMINATOR

Consider the set of anisochronic systems with time delay in 
the numerator and denominator: 

s

s

es

e
sP

2

1

5

3
)( �

�









� , �1 � [0, 4], �2 � [0, 0.8] (31)

This set of plants is treated via LFT using the scheme in Fig. 3. 
Weights Wdel1 and Wdel2 can be obtained from the inequalities:
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satisfy (15) with very low conservatism.

Now, it is easy to create an open-loop interconnection with 
weighted sensitivity function as a performance indicator. Recall 
the closed-loop interconnection depicted in Fig. 4 with the open 
loop in dashed rectangle denoted G. The perturbation matrix 
has the form (16) and performance weight is a 3rd order transfer 
function:
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The weight W1 has a small factor for s0 in the denominator so 
that the DGKF formulae can be used.

The plant for which the controller is derived is the nominal 
system:
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The instability of P0 does not contradict stability of the 
nominal feedback loop. This is guaranteed by controller K
satisfying (10).

Nominal plant P0 can be transformed to: 
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The aim of synthesis is to design a controller satisfying con-
dition (12). Evolutionary optimization by Differential Migra-
tion gave the poles and arbitrary parameters as follows: 

 α1 = 0.023, α2 = 31.973, α3 = 23.264, α4 = 1.771 (37)

 t1 = 24.50, t2 = 44.89 (38)

and controller 
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The D-K iteration for the interconnection in Fig. 4 yields the 
controller 
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Both controllers satisfy condition (12) (see Fig. 10) with maxi-
mum values: 
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The controllers for 2DOF feedback loop (Fig. 9a, 9b - algeb-
raic approach and D-K iteration, respectively) have the com-
pensator (nk2, dk2, nkdk2, dkdk2) defined as fraction of the factors 
corresponding with most stable zero and least stable pole of KA

and KD-K and feedback (nk1, dk1, nkdk1, dkdk1) and feed-forward 



part (nFW, dk1, nFWdk, dkdk1) defined by the fraction of the factors 
corresponding with remaining zeros and poles of KA and KD-K

with 0,1kFW nn 
  and 0,1kdkFWdk nn 
  ( 0,1kn , 0,1kdkn being the coef-

ficients of nk1 and nkdk1 of zero exponent of s): 
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Fig. 7. Bode plot Wdel1 (dashed) and the right side of (15) (solid)

Fig. 8. Bode plot Wdel2 (dashed) and the right side of (15) (solid)

 (a) (b) 

(c) 
Fig. 9. 2DOF feedback loop 

In order to overcome the problem of non-integration struc-
ture of the D-K iteration controller a scheme with integrator 
incorporating the integration property into the controller was 
used (see Fig. 6). The controller for 1DOF (Fig. 5) and 2DOF 
(Fig. 9c) feedback loop has the transfer functions:
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and 1.002)],([sup * 

� KDl KGF�
�

 consequent upon approxima-

tion with lower order transfer function. The higher value of μ

can be fixed by relaxing the performance weight.

Simulations have been performed for 1DOF and 2DOF feed-

back loop with real plant P, i.e. with transport delays present in 

the simulation model. The interconnection of 2DOF system is in 

Fig. 9. For details on 2DOF controllers in RPS see [10]. 

Fig. 10. Mu-plot for the D-K iteration with G* and 1DOF structure (dashed) and 

algebraic approach (solid)

Fig. 11. Simulation for 1DOF structure (�1 = 4, �2 = 0.8)

Fig. 12. Simulation for D-K iteration with G* and 1DOF structure (�1 = 4, 

�2 = 0.8)

Fig. 13. Simulation for with 2DOF structure (�1 = 4, �2 = 0.8). 

Simulation for both controllers with 1DOF structure and step-
wise reference signal is in Fig. 11. Simulation for 2DOF structure 
and the same reference signal is in Fig. 13. It is apparent that the 
D-K iteration has a non-zero steady-state error for both 1DOF 
and 2DOF interconnection which is not the case of the algebraic 
approach. Set point tracking is faster for the algebraic approach 
with lower overshoot for 1DOF controller structure. The steady-
state error is not present for the D-K iteration and generalized 
plant G* with integrator cascade included (Fig.12 and 14). The 
standard procedure yields faster tracking, however, the comple-
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xity of the controller is higher than for the algebraic approach and 
D-K iteration with no cascade in generalized plant. 

The same simulations but with half time delays are depic-

ted in Fig. 15 and 16. It can be observed that the properties of 

feedback loop do not degrade if the time delays vary in the 

intervals of 0 to 4 and 0 to 0.8 for �1 and �2, respectively, except 

the overshoot for D-K iteration with integrator cascade and half 

time delays (Fig. 16). For the 2DOF structure, no overshoot is 

present which is not true for 1DOF feedback loop.

Fig. 14. Simulation for D-K iteration with G* and 2DOF structure (�1 = 4, �2 = 0.8)

Fig. 15. Simulation for 2DOF structure (�1 = 2, �2 = 0.4)

Fig. 16. Simulation for D-K iteration with G* and 2DOF structure (�1 = 2, 

�2 = 0.4).

VII. DOWNLOAD

The Robust Control Toolbox for Time Delay Systems with 

Time Delay in Numerator and Denominator toolbox can be 

downloaded from: 

http://dlapa.cz/homeeng.htm

VIII.CONCLUSION

The Robust Control Toolbox for Time Delay Systems with 

Time Delay in Numerator and Denominator has been applied to 

unstable time delay system with uncertain time delays in both 

numerator and denominator of the controlled plant. The simu-

lation proved functionality of the algebraic approach and the 

method of treating uncertain time delays using linear fractional 

transformation and structured singular value even in the case of 

uncertain time delay in the denominator of the control plant as 

well as the functionality of factorization for both approaches in 

two-degree-of-freedom feedback loop fixing internal instability 
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