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Abstract: - One of the possible approaches to control of dead-time processes is application of predictive control 

methods. In technical practice often occur higher order processes when a design of an optimal controller leads 

to complicated control algorithms. One of the possibilities of control of such processes is their approximation 

by lower-order model with dead-time (time-delay). The first part of the paper deals with a design of an 

algorithm for predictive control of high-order processes which are approximated by a second-order model of 

the process with time-delay. The second part of the paper deals with a design of an analogical algorithm for 

predictive control of multivariable processes with time-delay. The predictive controllers are based on the 

recursive computation of predictions which was extended for the time-delay system. The designed control 

algorithms were verified by simulation.  
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1 Introduction 
Some technological processes particularly in 

chemical industry are characterized by time-delays. 

Time-delays are mainly caused by the time required 

to transport mass, energy or information, but they 

can also be caused by processing time or 

accumulation. Time-delay may be defined as the 

time interval between the start of an event at one 

point in a system and its resulting action at another 

point in the system. One older classification of 

techniques for the compensation of time-delayed 

processes is introduced in [1],[2] and newer 

overview of recent advances and open problems it is 

possible to find in [3]. Processes with time-delay in 

general are difficult to control using standard 

feedback controllers. One of the possible 

approaches to control processes with time delay is 

model predictive control (MPC) [4], [5], [6]. The 

predictive control strategy includes a model of the 

process in the structure of the controller. The first 

time-delay compensation algorithm was proposed in 

[7]. This control algorithm known as the Smith 

Predictor (SP) contained a dynamic model of the 

time-delay process and it can be considered as the 

first model predictive algorithm.  

When using most of other approaches, the 

control actions are based on past errors. MPC uses 

also future values of the reference signals. It is 

essentially based on discrete or sampled models of 

processes. Computation of appropriate control 

algorithms is then realized especially in the discrete 

domain. The basic idea of the generalized predictive 

control [8], [9] is to use a model of a controlled 

process to predict a number of future outputs of the 

process. A trajectory of future manipulated variables 

is given by solving an optimization problem 

incorporating a suitable cost function and 

constraints. Only the first element of the obtained 

control sequence is applied. The whole procedure is 

repeated in following sampling period. This 

principle is known as the receding horizon strategy. 

Some technological processes in industry are 

characterized by high-order dynamic behaviour or 

large time constants which increase the difficulty of 

controlling it. However using the approximation of a 

higher-order process by a lower-order model with 

time-delay provides simplification of the control 

algorithms. The paper then introduces a design and 

verification of an algorithm for predictive control of 

second order linear systems with two steps time 

delay. A number of higher order industrial processes 

can be approximated by this model. 

Typical technological processes require the 

simultaneous control of several variables related to 

one system. Each input may influence all system 

outputs. The design of a controller for such a system 

must be quite sophisticated if the system is to be 

controlled adequately. One of the most effective 

approaches to control of multivariable systems is 

model predictive control. An advantage of model 

predictive control is that multivariable systems can 

be handled in a straightforward manner. In technical 

practice also often occur multivariable processes 
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with time delay. Typical examples of such processes 

are e.g. liquid storing tanks, distillation columns or 

some types of chemical reactors. The paper then 

deals also with a design of an analogical algorithm 

for predictive control of multivariable processes 

with time-delay. Both for control of the single input-

single output and multivariable systems was applied 

the same approach. The predictive controllers are 

based on input-output models. In case of the SISO 

control it is a transfer function model and in case of 

the MIMO control the model is considered in the 

form of the matrix fraction. The models are used for 

a recursive computation of predictions which was 

extended for the time-delay systems. In case of the 

input-output model it is not necessary to examine 

observability. Feasibility is ensured by a suitable 

setting of constraints.  The proposed algorithms 

were verified by simulation.  

 

2 Model of the Controlled System  

2.1 Model of SISO System 
A model of the second order which is widely used in 

practice and has proved to be effective for control of 

a range of various processes was applied. The model 

without a time-delay is described by the transfer 

function 
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Model predictive control has an ability to deal 

with control difficulties such as nonlinearity, 

constrained variables, time-delay and also control of 

unstable systems. A system described by transfer 

function (1) may be then also unstable i.e. with roots 

of the denominator outside the Unite Circle. The 

proposed predictive controller then ensures BIBO 

(Bounded Input Bounded Output) stability of the 

whole closed loop system despite the fact that the 

controlled system is unstable. The model can be also 

written in the form 

       kuzBkyzA 11                                               (3) 

A widely used model in general model predictive 

control is the CARIMA model which we can obtain 

from the nominal model (3) by adding a disturbance 

model 
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where  kn   is a non-measurable random 

disturbance that is assumed to have zero mean value 

and constant covariance and the operator delta is 
11  z .  

The polynomial  1zC  will be further considered 

as   11 zC . The CARIMA description of the 

system is then in the form 

         knkΔuzBkyzΔA   111                           (5) 

The nominal model with time-delay is 

considered as 
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The CARIMA model for time-delay system takes 

the form 

         knkuzBzkyzA d   111                      (7) 

where d is the dead time. In our case d is equal to 2.  

2.2 Model of MIMO System 
Let us consider a two input – two output system. 

The two – input/two – output (TITO) processes are 

very often encountered multivariable processes in 

practice and many processes with inputs/outputs 

beyond two can be treated as several TITO 

subsystems [10]. 

A general transfer matrix of a two-input–two-

output system with significant cross-coupling 

between the control loops is expressed as: 
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     zzz UGY                                                        (9) 

where  zU  and  zY  are vectors of the manipulated 

variables and the controlled variables, respectively. 

      Tzuzuz 21 ,U       Tzyzyz 21 ,Y                (10) 

It may be assumed that the transfer matrix can be 

transcribed to the following form of the matrix 

fraction: 

         11
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where the polynomial matrices 
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22

1

22 ,   zRzR BA
 are the left coprime 

factorizations of matrix  zG   and the matrices 

   1

221

1

221 ,   zRzR BA  are the right coprime 

factorizations of  zG . The model can be also 

written in the form 

       zzzz UBYA
11                                           (12) 
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As an example a model with polynomials of 

second degree was chosen. This model proved to be 

effective for control of several real TITO processes 

[11], where controllers based on a model with 

polynomials of the first degree failed. The model 

has sixteen parameters. The matrices A and B are 

defined as follows 
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the CARIMA model in the MIMO case is as follows  

             kzzkzkz nΔCuByA
11111             (15) 

where  
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C is a colouring polynomial matrix. For purpose of 

simplification it was supposed to be equal to the 

identity matrix [4].  

The nominal model with d steps of time-delay is 

considered as 

          dd zzzzzzz   11

1

1

1

111
ABBAG            (17) 

For the purpose of simplification it was 

considered an equal time-delay in all particular 

transfer functions of the transfer matrix. The 

CARIMA model for time-delay system then takes 

the form 

             kzzkzzkz d
nΔCuByA

11111           (18) 

 

3 Implementation of predictive 

controller  

The basic idea of MPC is to use a model of a 

controlled process to predict N future outputs of the 

process. A trajectory of future manipulated variables 

is given by solving an optimization problem 

incorporating a suitable cost function and 

constraints. Only the first element of the obtained 

control sequence is applied. The whole procedure is 

repeated in following sampling period. This 

principle is known as the receding horizon strategy. 

The computation of a control law of MPC is based 

on minimization of the following criterion  
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where e(k+j) is a vector of predicted control errors, 

Δu(k+j) is a vector of future increments of the 

manipulated variable (for the system with two 

inputs and two outputs each vector has two 

elements), N is a length of the prediction horizon, Nu 

is a length of the control horizon and λ is a 

weighting factor of control increments.  

A predictor in a vector form is given by 

0
ˆ yuGy                                                           (20) 

where ŷ   is a vector of system predictions along the 

horizon of the length N, Δu is a vector of control 

increments, y0 is the free response vector. G is a 

matrix of the dynamics. It contains values of the 

step sequence. In SISO case it is given as    
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In TITO case the matrix G takes the following 

form 
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where sub-matrices Gi have dimension 2x2 and 

contain values of the step sequence. 

The criterion (12) can be written in a general 

vector form  

    uuwywy  TT
J ˆˆ                                 (23) 

where w is a vector of the reference trajectory.  The 

criterion can be modified using the expression (19) 

to   

uHuug  TTJ 2                                            (24) 

where the gradient g and the Hess matrix H are 

defined by following expressions 

 wyGg  0

TT                                                   (25) 

IGGH  T                                                       (26) 

Handling of constraints is one of main 

advantages of predictive control. General 
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formulation of predictive control with constraints is 

then as follows 

uHuug
u




TT2min                                           (27) 

owing to 

buA                                                                 (28) 

The inequality (28) expresses the constraints in a 

compact form. 

4 Computation of predictions – SISO 

system 

An important task is computation of predictions for 

arbitrary prediction and control horizons. Dynamics 

of most of processes requires horizons of length 

where it is not possible to compute predictions in a 

simple straightforward way. Recursive expressions 

for computation of the free response and the matrix 

G in each sampling period had to be derived. There 

are several different ways of deriving the prediction 

equations for transfer function models. Some papers 

make use of Diophantine equations to form the 

prediction equations [12]. In [13] matrix methods 

are used to compute predictions. We derived a 

method for recursive computation of both the free 

response and the matrix of the dynamics. 

Computation of the predictor for the time-delay 

system can be obtained by modification of the 

predictor for the corresponding system without a 

time-delay. At first we will consider the second 

order system without time-delay and then we will 

modify the computation of predictions for the time-

delay system. 

 

4.1 Computation of predictions without time-

delay 
The difference equation of the CARIMA model 

without the unknown term can be expressed as: 
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It was necessary to directly compute three steps-

ahead predictions in a straightforward way by 

establishing of previous predictions to later 

predictions. The model order defines that 

computation of one step-ahead prediction is based 

on the three past values of the system output. 
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The predictions after modification can be written 

in a matrix form 
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where 
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The coefficients of the matrices G, P and Q for 

further predictions are computed recursively. Based 

on the three previous predictions it is repeatedly 

computed the next row of the matrices P and Q in 

the following way:   
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    12221314 1 papaapap                          (37) 
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The recursion of the matrix G is similar. The 

next element of the first column is repeatedly 

computed and the remaining columns are shifted. 

This procedure is performed repeatedly until the 

prediction horizon is achieved. If the control horizon 

is lower than the prediction horizon a number of 

columns in the matrix is reduced. Computation of a 

new element is performed as follows: 

   4 1 3 1 2 2 2 11g a g a a g a g    
                           

(39)
 

4.2 Computation of predictions with time-delay 
In order to compute the control action it is necessary 

to determine the predictions from d+1 to d+N. 

The predictor (31) is then modified to  
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Recursive computation of the matrices is 

analogical to the recursive computation described in 

the previous section. 

The predictor modified for two steps of time –

delay is then given as follows 

 
 
 

 
 

 
 
 

 
 
 























































































































2

1

535251

434241

333231

3

2

1

554

443

332

1

23

12

01

3ˆ

2ˆ

1ˆ

ky

ky

ky

qqq

qqq

qqq

ku

ku

ku

pgg

pgg

pgg

ku

ku

gg

gg

g

ky

ky

ky

          (41) 

 

 

5 Computation of predictions – TITO 

system 

5.1 Computation of predictions without time 

delay 
The difference equations of the CARIMA model 

without the unknown term are as follows 
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These equations can be written into a matrix 

form 
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The computation of three steps-ahead predictions 

can be expressed as  
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The equations (46) can be written in a compact 

form using (20) as follows 
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It is possible to divide computation of the 

predictions to recursion of the free response and 

recursion of the matrix of the dynamics. The free 

response vector predictions can be expressed as: 
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The coefficients of the matrices P and Q for 

further predictions are computed recursively. Based 

on the three previous predictions it is repeatedly 

computed the next row of the matrices P and Q in 

the following way: 
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The recursion of the matrix G is analogical. The 

computation is similar as it was introduced in 

section 4.1. It is apparent from equations (53) and 

(54). 
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The predictions can be written in a compact matrix 

form 
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5.2 Computation of predictions with time-delay 
The predictor modified for an arbitrary time –delay 

is given as follows.  
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The computation of the free response is then 

modified to 
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The computation of the forced response is again 

given by equation (53) 

6 Simulation Verification  
6.1 SISO control  

As simulation examples were chosen a fifth order 

linear system described by following transfer 

function 
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and a fifth-order linear system with non-minimum 

phase 
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The systems were identified by model (6) using 

off-line LSM (least squares method) [14]. System 

(58) was approximated by  
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and system (59) was approximated by 
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Both for sampling period sT 5.00  . The step 

responses of models (58) and (59) together with 

discrete step responses of their approximations (60) 

and (61) are in the following figures 

 

Fig. 1 Step responses of models (58) and (60) 

 

Fig. 2 Step responses of models (59) and (61) 

Control responses are in figures 3, 4, 5 and 6. 

The tuning parameters that are lengths of the 

prediction and control horizons and the weighting 

coefficient λ were tuned experimentally. There is a 

lack of clear theory relating to the closed loop 

behavior to design parameters. The length of the 

prediction horizon, which should cover the 

important part of the step response, was in both 

cases set to N = 40. The length of the control 

horizon was also set to Nu = 40. The coefficient λ 

was taken as equal to 0,5. 

 

Fig. 3 Control of model (60) 

 

Fig. 4 Control of model (60) –manipulated variable 

 

Fig. 5 Control of model (61) 
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Fig. 6 Control of model (61) –manipulated variable  

 

6.2 TITO control  

A TITO system with two steps of time-delay 

      2111  zzzz BAG                                       (62) 

described by polynomial matrices (63) –(64) was 

chosen as an example  
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In order to compute the right control action it 

was necessary to determine the predictions from 

2+1 to 2+N. 
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The computation of the free response was then 

modified to 
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Control responses are in Fig. 7 and Fig. 8. 

The length of the prediction horizon was set to N 

= 10. The length of the control horizon was also set 

to Nu = 10. The coefficient λ was taken as equal to 

0,5. 

 

Fig. 7 Simulation results – controlled variable. 
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Fig. 8 Simulation results – manipulated variable. 

7 Conclusions  
The algorithm for control of the higher-order 

processes based on model predictive control was 

designed. The higher-order process was 

approximated by the second-order model with time 

delay. The predictive controller is based on the 

recursive computation of predictions by direct use 

of the CARIMA model. The computation of 

predictions was extended for the time-delay system. 

The control of two modifications of the higher-order 

processes (stable and non-minimum phase) were 

verified by simulation. The simulation verification 

provided good control results. Asymptotic tracking 

of the reference signal was achieved in both cases. 

The control of non-minimum phase system was 

rather sensitive to tuning parameters. Experimental 

tuning of the controller was more complicated in 

this case. The analogical algorithm for control of the 

multivariable time-delay systems was also designed. 

The control of the two – input/two – output system 

with two steps of time-delay was verified by 

simulation. Good simulation control results were 

achieved. Further research can be focused on an 

extension of the proposed method for control of 2-D 

(two-Dimensional) discrete time systems.  
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