
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 13 (2017) pp. 3944-3949

© Research India Publications. http://www.ripublication.com

3944

Using of Inputs and Outputs on Microcontrollers Raspberry and Arduino

Michal Sustek, Miroslav Marcanik and Zdenek Urednicek

Faculty of Applied Informatics, Tomas Bata University in Zlin, Zlin, Czech Republic.

Abstract

Nowadays technology enables using of small devices to

control complex systems. These devices (microcontrollers) can

provide enough performance to substitute personal computers

(PC). The two most known microcontrollers (Arduino and

Raspberry) are connected together to one system. The article

provides insight into the issue of inputs and outputs and their

control for educational purpose.

Keywords: Microcontroller; Arduino; Raspberry; Input;

Output; Python; General Purpose Inputs and Outputs

INTRODUCTION

Today’s high demand for centralized and wireless control of a

high number of devices [1]. That leads to simplification of our

lives in home automation, laboratory project, education or

entertainment. Microcontrollers are universal devices, which

can provide enough of performance to control these types of

projects. At the same time, the performance and capabilities of

microcontrollers are growing fast in time [1].

Current industrial and professional systems for control inputs

and outputs of a wide variety of component is based on

specialized devices [2]. However, microcontrollers can realize

these tasks. The microcontrollers are complex devices;

moreover, one of them can be used in different tasks (for

instance home automation, control system) [3,4].

There is a wide variety of manufacturers, which makes

microcontrollers with a number of different types of

processors and performances. The Raspberry and Arduino are

the most common microcontrollers [1].

Section 1 describes two types of microcontrollers (Raspberry

and Arduino). In section 2 is solved connection between these

two microcontrollers. Section 3 shows basic information about

inputs, and outputs and examples in programming by Python.

Section 4 is focused on analog outputs, inputs, and conversion

between them.

MICROCONTROLLERS

The microcontroller is a concept, which contains from Central

Processing Unit (CPU), memory and inputs/outputs. The term

microcontroller became popular after the introduction of a

minicomputer when Isaac Asimov used term microcomputer

in his story The Dying Night in 1956. [1]

The microcontroller replaced many components of

minicomputer by a one-board device. From this time

microcontrollers has gone through an amount of improvement

and minimization until today’s form of the microcontroller.

A. Raspberry Pi

The microcontroller Raspberry Pi is a small one-board

microcontroller, which was focused on teaching a basic

computer science in schools. In particular, Python

programming language. This small microcontroller became

more popular than anticipated.

Raspberry evolved through several versions with different

performance. Today’s generation of microcontroller,

Raspberry PI 3 is equipped with Broadcom BCM2837 SoC

with 1.2 GHz quad-core ARM Cortex-A53 processor. This

processor is ten times more powerful than a processor, which

was used, in the first version of Raspberry. It supports Linux-

based operating systems, USB ports for keyboards, mouse,

Ethernet adapter and many other devices. On the board, it is

HDMI connector for attaching monitor and GPIO (General

Purpose Input/Output) pins. As a data storage are used

microSD card and primary programming language is Python.

Figure 1: Raspberry Pi 2B [13].

For this project was chosen variant Raspberry Pi 2B, which

has 4-core 900 MHz processor, 1 GB of RAM, 4 USB 2.0

ports, HDMI video output, 40-pin GPIO header.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 13 (2017) pp. 3944-3949

© Research India Publications. http://www.ripublication.com

3945

B. Arduino

The microcontroller Arduino is another one-board

microcontroller. Its design served for support to teaching

informatics and automation in schools. Arduino does not

support the connection of monitor, keyboard, and mouse. On

the other hand, it is designed to the connection of LED, LCD

displays, sensors, actuators, and lighting.

Arduino is designed in a wide variety of types, like Raspberry.

Unlike Raspberry, Arduino is not designed for substitute a

standard PC. The main program is developed on another

device or PC and it is uploaded into Arduino. Only this

program is launched on Arduino and it contains loops, which

are constantly repeated. Arduino can be expanded by Arduino

Shields. These modules can improve Arduino’s performance

(Wi-Fi, Ethernet, Motor, GPS). [5]

Figure 2: Arduino UNO [12].

CONNECTION BETWEEN MICROCONTROLERS

These two different microcontrollers can work together to

enhance their capabilities. There are some examples why use

Arduino and Raspberry together.

 Using a large number of shareable examples and

libraries for Arduino

 Working with 5 V logic levels (Raspberry has 3.3 V

logic)

 Enhancing Arduino experiments with more

processing power.

Arduino development board must be programmed by the

external device, like PC or Raspberry. Debug will be faster if

the Raspberry is used to programming, on the other hand, the

compilation will be slower. The Arduino IDE must be

installed on microcontroller Raspberry, which can be done by

terminal and commands:

 Sudo apt-get update

 Sudo apt-get install Arduino

Now the Arduino must be plugged into one of the open USB

serial port. This connection will be able to provide enough

power for its running. However, in several tasks is better to

use external power source (running motors or heaters for

instance).

When the Arduino IDE has launched it pools all the USB

devices and builds a list that is shown in the Serial Port menu.

[4] In this list, where the port is and in the board menu must be

selected type of Arduino board (for instance Uno). Then the

python script must be created and launched.

The Python script:

import serial

port_A =”/dev/tty/ACM0”

ArduinoSerial = Serial.Serial (port_A,9600)

ArduinoSerial.flushInput()

while true:

 if (ArduinoSerial,inWaiting()>0:

 input = ArduinoSerial.read(1)

print(ord(input))

In program is first imported library for working with a serial

port, and then is opened serial port, which is connected to

Arduino. In next part of the script, the input buffer is cleared

out, from the serial buffer is read one byte. Finally, is changed

the incoming byte into an actual number with ord().

Then the Arduino send a number to the script. The number is

interpreted as a string. This solution is sufficient if just one

byte is sent (for instance 1 for left button, 2 for right button) –

it can be used 255 values for discrete events. For using a range

0 to 1023, the Arduino code must be modified by the

following code.

 void setup() {{

 Serial.begin(9600);

 }

 void loop () {

for (int b=0; b < 1024; b++)

Serial.println (b,DEC);

delay(50)

}

 }

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 13 (2017) pp. 3944-3949

© Research India Publications. http://www.ripublication.com

3946

The main difference between these two codes is in println()
command. In first case serial.write() is used to write a raw

number to the serial port. On the other hand, using of println()
lead to format a number as a decimal string and send the

ASCII codes for the string [6].

On the Python’s side can be used command readline() instead

of read(), which will read all of the characters up until the

carriage return and newline. In Python, exist a wide variety of

functions for converting between the various data types and

strings. For instance can be used command inputAsInteger=int
(input), which change the input to the integer value.

INPUTS AND OUTPUTS

The main advantage of Raspberry is using GPIO pins. They

are generic pins on Raspberry board, which behavior is not

defined. Their purpose can be programmed to users’ needs. All

pins can be configured as inputs or outputs.

Properties:

 Input values can be readable

 Output values can be readable or writable

 Can be used as IRQ (Maskable interrupt)

In the case of raspberry are GPIO pins controlled by external

library RPi.GPIO, which must be imported into the main

control program. This library can be downloaded from

www.python.org.

Figure 3: GPIO layout Raspberry Pi 2 B [14].

GPIO pins can be accessed for controlling many hardware

equipment like LED, motors, relays. That are examples of

outputs. As input can be used button status, switch status or

dials, and sensors output, which means light, motion,

temperature or proximity. Raspberry Pi has besides classical

GPIO also some inputs and outputs for usage of keyboard,

monitor, mouse, Ethernet. It provides crucial advantage

together with Arduino microcontroller.

There are also few more advantages for using Raspberry:

 File system – ability to read and write data in Linux

system

 Linux tools – usage of command-line utilities to

control processes and automate wide variety of tasks

 Languages – wide variety of supported programming

languages (for instance Python, C, Java, Perl)

A. Programming

In this chapter will be presented elemental programming of

basic inputs and outputs (for instance LED as an output, and

button as an input). These two examples are digital input and

output.

1) LED blinking

import RPI.GPIO as GPIO

import time

GPIO.setmode(GPIO.BCM)

GPIO.setup(25, GPIO.OUT)

while True:

GPIO.output(25, GPIO.HIGH)

time.sleep(1)

GPIO.output(25,GPIO.LOW)

time.sleep(1)

First, the libraries for GPIO control and sleep function are

imported. Then the GPIO is set as BCM (the chip signal

numbers are used) and pin 25 is set as output. Last part of the

program consists of infinite loop in which are LEDs on/off

function and waiting function for 1 second.

http://www.python.org/

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 13 (2017) pp. 3944-3949

© Research India Publications. http://www.ripublication.com

3947

2) Button reading

import RPI.GPIO as GPIO

import time

GPIO.setmode(GPIO.BCM)

GPIO.setup(24, GPIO.IN)

counter=0

while True:

 Value_input=GPIO.input(24)

 if (Value_input==True)

 Counter=counter+1

Print (“Button was pressed: “ +str(counter)
“times”)

time.sleep(0.2)

As in the previous code, it is necessary to import libraries for

GPIO and sleep functions. The GPIO is set as BCM and port

24 is set as an input. Then the variable counter was created.

Last part of the program also consists of infinite loop, in which

is controlled that the button is pressed. Then counter is

incremented and the message with a number of pressing is

showed.

ANALOG INPUT AND OUTPUT

In many application is necessary to work with the continuous

signal (for instance dim of LED, control of motor speed). In

this case is perforce to convert a digital signal into an analog

value.

A. Output – digital to analog

GPIO module uses Pulse-width modulation method (PWM),

which can be modified to seem like the range of voltage;

however, it is pulsing of PWM signal as one can see in figure

4 [1]. The behavior of this signal for controlled device is

similar to an analog signal. In programming, are used syntax

range. For range are set start value, final value and step (for

instance range(0,100, 10)).

Figure 4: PWM range [1].

The following example is created for dimming of blinking

LED.

import RPi.GPIO as GPIO

import time

GPIO.setmode(GPIO.BCM)

GPIO.setup(25, GPIO.OUT)

A=GPIO.PWM (25, 50)

A.start (0)

while True:

 for DC in range (0,100,10)

 A.ChangeDutyCycle(DC)

 time.sleep (0.1)

for DC in range (100,0,-10)

 A.ChangeDutyCycle (DC)

 time.sleep(0.1)

Most of the program is similar to the program for on/off the

LED. The different parts are the creation of PWM object A

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 13 (2017) pp. 3944-3949

© Research India Publications. http://www.ripublication.com

3948

and set it to GPIO pin 25 with a frequency 50 Hz and start

value 0. The second difference is part of the code for

incrementing the value of DC by 10 from starting value to the

value 100 (100 percent of duty cycle). Moreover, the reverse

part of the program for decrementing DC value [7].

B. Input – analog to digital

Like can be outputs controlled on a scale 0 to 100% of the

duty cycle, can be also possible to read sensors that offer to

Raspberry Pi a range of values.

On microcontroller Arduino, there is a special hardware,

which can convert the analog voltage value into the digital

data (for instance ADS1115) [1]. This hardware is not

available on Raspberry, but it is possible to use Arduino

hardware because Adafruit create a special breakout board for

it.

Figure 5: ADS1115 [7].

Adafruit also provides open source Python library for reading

the values from the ADS1115, via I2C (Inter-Integrated

Circuit) protocol. To read analog inputs via I2C must be I2C

enable on Raspberry configuration, and drivers for ADS and

tools for I2C must be installed [1].

The following program code is created for writing the code to

read the ADC.

from Adafruit_ADS1x15

from time import sleep

ADC=Adafruit_ADS1x15.ADS1115()

while True:

 output1=ADC.read_ADC()

 print output1

 sleep(0.25)

The program contains creation of new ADS object called

ADC. Addition reading from channel A0 on the module and

store this value into variable output1.

CONCLUSION

The high demand for home automation and Do It Yourself

(DIY) project leads to an extension of microcontrollers in a

wide spectrum. This paper provides insight into two main

microcontrollers on the market and their basic programming

their inputs and outputs in Python language.

These two main microcontrollers are Raspberry and Arduino.

Raspberry is more similar to the personal computer, and it can

substitute it. On the other hand, Arduino is used more in home

automation like a device, which is programming on an

external device that leads to usage into the control system in

real time. In the project was used a combination of Raspberry

and Arduino. As a programming language was chosen Python,

which is a higher programming language. Python does not

need strictly defined variables, unlike C++. Next to Arduino

was used GPIO pins, so the module RPi.GPIO must be

imported into programs. In project were created programs for

controlling outputs and work with inputs, and their analog

alternatives. These programs were focused on education.

In future, it is going to expand programs into more complex

variant for the whole system and creating of educational aids

for microcontroller programming.

ACKNOWLEDGMENT

This work was supported by Internal Grant Agency of Tomas

Bata University under the project No. IGA/FAI/2017/04.

REFERENCES

[1] RICHARDSON, Matt, and Shawn P. WALLACE. M

ake: getting started with Raspberry Pi. Sebastopol,

CA: OReilly, 2015.

[2] MOLLOY, Derek. Exploring Raspberry Pi:
interfacing to the real world with embedded Linux.

Indianapolis, IN: John Wiley & Sons, 2016.

[3] WENTK, Richard. Raspberry Pi. Indianapolis, IN:

John Wiley & Sons, Inc., 2014.

[4] SPANNER, Günter. Arduino: circuits & projects
guide. Aachen: Elektor International Media b.v., 2013.

[5] KARVINEN, Kimmo, and Tero KARVINEN. Getting
started with sensors:. Sebastopol, CA: Maker Media,

2014.

[6] BELL, Charles. Beginning sensor networks with
Arduino and Raspberry Pi:. Berkeley, CA: Apress,

2013.

[7] BANZI, Massimo, and Michael SHILOH. Getting
Started with Arduino:. Sebastopol, CA: Maker Media,

2015.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 13 (2017) pp. 3944-3949

© Research India Publications. http://www.ripublication.com

3949

[8] CHAITANYA, K. et al. Multiple home automation on
raspberry pi. . . V. BHATEJA, S. C. SATAPATHY a

A. JOSHISpringer Verlag, 2017. Sponsors:;

Conference code: 180309.

[9] MEMBREY, P., D. VEITCH a R. K. C. CHANG.

Time to measure the pi. Association for Computing

Machinery, 2016. 327-334 s. Sponsors: ACM

SIGCOMM; ACM SIGMETRICS; Conference code:

124785. ISBN 9781-450345262(ISBN).

[10] NAVEENKRISHNA, M. a S. JAYANTHY. Real time

vehicle tracking and monitoring using raspberry pi.
International Journal of Applied Engineering
Research. 2015, vol. 10, no. 20, s. 15259-15263.

[11] PATHIK, B. B. et al. Development of a cell phone
based vehicle remote control system. , 2014.

[12] Arduino, product list, Available from:

https://www.arduino.cc/en/main/products (2017-15-6)

[13] S. MONK. Make: action: Movement, light, and sound
with Arduino and Raspberry Pi. San Francisco, CA:

Maker Media. (2016)

[14] Raspberry Pi, GEEK; Available from:

http://www.raspberry-pi-geek.com/howto/GPIO-

Pinout-Rasp-Pi-1-Model-B-Rasp-Pi-2-Model-B (2017-

12-6)

https://www.arduino.cc/en/main/products
http://www.raspberry-pi-geek.com/howto/GPIO-Pinout-Rasp-Pi-1-Model-B-Rasp-Pi-2-Model-B
http://www.raspberry-pi-geek.com/howto/GPIO-Pinout-Rasp-Pi-1-Model-B-Rasp-Pi-2-Model-B

