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Abstract. At many motion control tasks, the problem of oscillations existence in multidimensional system 
with limited motion control and imperfect or complicated state quantities measurement possibility exists. 
Paper describes active damping simple possibility of these type systems and by two-dimensional system 
physical model shows active damping possibility also with indirect state quantities measurement option. 

1 Introduction 
This paper goal is to introduce some pieces of 
knowledge relevant to active damping of mechanical 
systems with more degree of freedom with limited action 
interventions' possibilities and limited or complicated 
quantities measurement possibility. This problem often 
occurs at different mechanical systems motion control 
types serving as optical (surveillance) or other systems 
porter, which depend on effector systems positional state 
accuracy, and when actuators functions in some 
generalized coordinates only. 

As such system example can be cameras porter, laser 
scanning system porter created from no ideally stiff 
bodies, weapons porter system with uncontrolled 
projectiles, but also manipulator with no ideally stiff 
arms for exact assembly application, not to mention, for 
invasive medicine application. 

2 Description of system with one 
degree of freedom and its active 
damping principle 

For linear system from Fig.1, where force f(t) is created 
by actuator according to Fig.2  reads: 

 
Fig. 1.  Active damping principle of system with one degree of 

freedom. 
 

 
Fig. 2.  Masse M cascade position control. 
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and for state model reads: 
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If mass m is „extended" to 1m in the positive 
direction and reference value 0x

žM = , then after mass 
m releasing,  the regulators in cascade will ensure almost 
mass M perfect still stand. Mass m after releasing 
practically oscillates undamped. Mentioned is on Fig.3. 

For ;kg1000m;kg400M == ;m/N10.2k 5= and

3k;3k;V1/N10.2k pvp
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f ===  we obtain system 
poles 
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Fig. 3. The mass m undamped oscillation and masses M
stabilization. 

If we'll require obtaining from designed 
complete state regulator new required poles 
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then is possible to create this complete state regulator as 
[ ]8750011667000833300104440rT

.. .. −= (3) 

(see Fig.4.) 

Fig. 4. Complete state regulator. 

Control structure from Fig.4. will ensure the system 
behaviour for the same mass m „extending ", according 
to Fig.5. 

Fig. 5. Complete state regulator. 

It is evident that controlled mass M, suppresses mass 
m oscillations now. 

Fig.6 shows such system response on mass M desired 

position jump xMž = 5 m. 

Fig. 6. Response on required M position jump with m and M
masses oscillation active damping. 

Measurement mass m position and speed (eventually

MmMm vvxx and −− ) presents indeed problem in 
general. 

If we design complete linear observer system with 
select observer matrix eigenvalues 
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and we will use only part of reconstructed state 
quantities from it, then structure from Fig.7 will ensure 
identical system behaviour as we can see on Fig. 6. 

Fig. 7. Active damping with linear observer of m and M

masses. 

3 Active damping of mass system with 
two degree of freedom 

Study ordering from Fig. 8. and Fig 9., so system 
with two degree of freedom (planar motion without 
friction, normal to gravitation direction), whereas 
external mass M is controlled by e.g. electrohydraulic 
translational positional servo system producing force 
f(t). This mass can move only in x axis direction. 
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Fig. 8. Ordering of two masses system with two degree of 
freedom. 

Fig. 9 Two masses system with two degree of freedom scheme. 

Inside of this material „frame" is mass m, „hung" on 
two linear springs without dissipative damping, whose 
axes are, in quiescent state (mass M and m centres of 
gravity are in identical point, point [0, 0], angle ϕ = 0) 
displaced in a parallel way from coordinates axes. Mass 
m positive rotation direction is counter-clockwise. 

Create physical simulation model of given ordering 
by means of simulation system for multiport simulation 
physical models DYNAST**

Fig. 10 Multiport physical model of system from Fig.9.. 

** http://virtual.cvut.cz/dyn/examples/

Graphic model setting is on Fig. 10. 

Fig.11. shows system undamped response on mass M
rerquired position jump in time t = 0s; xMž=3m. 

Fig. 11. Undamped system from Fig .9. and Fig.10. behaviour 
for desired M mass jump of position  

It’s seen that the outer M mass fast movement to 
required position produces not only mass m oscillations 
in x axis, but also in y axis. In addition, thanks to 
asymmetric springs bearing, at this mass m yawing 
oscillation happens and successively mechanical energy 
"flows" between both axes. 

With regard of select ordering of both material 
bodies and their possible motion control way, use only x
axis for active damping. Employ piece of knowledge 
from previous one-dimensional case. Design complete 
state regulator for control and active damping in x axis 
and subsequently propose linear observer for Mm xx −
and Mxxm vv −  reconstruction. It means we suppose 
that we are able to measure mass M position and speed 
in x axis and differences Mm xx − and Mxxm vv − we 
will obtain from observer. 

Require the same mass M jump as in Fig. 11, but 
with above mentioned active dumping with state 
regulator and observer in x axis. On Fig. 12 is seen that 
system mechanical behaviour is damped. Not perfectly, 
because we dumped only part of energy. 

3 Conclusions 
Paper shows mechanical systems with two degree of 
freedom active damping simple possibility, applicable in 
case that the action interventions are available only in 
one axis. Designed one-dimensional complete state 
regulator is able, thanks „energy overflow" of 
unsymmetrical embedded springs, to damp significantly 
also oscillations of mass, which it is impossible to 
influence directly by action quantities.  
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Fig.12. Behaviour of system from Fig .9. and Fig 10. damped 
in one axis at M position desired jump

Regarding to inner mass position and speed 
complicated measurability (respectively Mm xx −
and Mxxm vv − ) for information about these quantities 
the linear observer was used. 

In the event of two-dimensional model using, 
eventually with two-dimensional observer it is possible 
to achieve system complete active damping. 
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