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ABSTRACT 

In this work, novel rectangle and circular orifice (zero-length) dies have been 

utilized for temperature-strain rate dependent planar and uniaxial extensional 

viscosity measurements for the LDPE polymer melt by using standard twin bore 

capillary rheometer and Cogswell model and the capability of five different 

constitutive equations (novel generalized Newtonian model, original Yao model, 

extended Yao model, modified White-Metzner model, modified Leonov model) to 

describe the measured experimental data has been tested. It has been shown that 

chain branching causes the strain hardening occurrence in both unixial and planar 

extensional viscosities and its maximum is shifted to the higher strain rates if the 

temperature is increased. The level of uniaxial extensional strain hardening for the 

branched LDPE sample has been found to be higher in comparison with the planar 

extensional viscosity within wide range of temperatures.  

 

 

 

 

 



INTRODUCTION 

The extensional viscosity represents key rheological parameter allowing 

understanding the molecular structure of the polymers as well as polymer processing 

at which the polymer melts are stretched [1-27]. Due to the fact that generation and 

control of the extensional flow is difficult, experimental determination of the 

extensional viscosity is a problem [28-32]. Probably the most challenging rheological 

task is experimental determination of planar extensional viscosity as one can see from 

very small numbers of experimental data available in the open literature [1-2, 12-16, 

33]. With the aim to understand this important rheological parameter in more detail, in 

this work, novel rectangle and circular orifice dies [34-35] have been utilized for 

planar and uniaxial extensional viscosity measurements for branched LDPE by using 

standard twin bore capillary rheometer and Cogswell model [6, 12] and the capability 

of five different constitutive equations [36-42] to describe the measured experimental 

data has been tested. 

EXPERIMENTAL 

In this work, extrusion coating, branched LDPE CA820 from Borealis Polyolefine was 

used. Linear viscoelastic properties (storage modulus, loss modulus, and complex 

viscosity) were measured on Advanced Rheometric Expansion System ARES 2000 

(Rheometrics Scientific, USA) in parallel plates geometry mode (plates diameter of 

25 mm) within 0.1 s−1 up to 100 s−1 frequency range at 1% shear strain to guarantee 

linear viscoelasticity regime only. In order to get storage and loss moduli for a large 

range of frequencies, the measurements were performed in a wide range of 

temperatures (130–250°C). Possible degradation at high temperatures was suppressed 



by inert nitrogen atmosphere. The well-known time-temperature-superposition 

principle was used to generate master curves for particular reference temperature. 

Twin-bore capillary rheometer Rosand RH7-2 (Rosand Precision, United Kingdom) 

was used for experimental determination of uniaxial and planar extensional viscosities 

by using long as well as orifice dies having the abrupt contraction (i.e. 180o entrance 

angle) and circular/rectangular shape (see Figures 1-2). The main advantage of both 

utilized orifice dies is the open downstream region design which eliminates any 

possibility for artificial pressure increase due to polymer melt touching the 

downstream wall [34-35]. Temperature measurement and control was performed at 

three separate zones in the barrel by using platinum resistance thermometers (PRTs) 

via microprocessor based board contained within the electronics rack communicating 

with the computer over a serial interface. Software running on the temperature board 

implements a three term (PID) control algorithm allowing independent variation of 

power for the three cuff barrel heaters with different heights and power ratings 

(1000W, 600W and 1000W). 

     The uniaxial and planar extensional viscosities have been determined through 

entrance pressure drop measurements by using the Cogswell model [6, 12] (see Table 

1). In this table, P0,U and P0,P represents the entrance pressure drop measured on 

circular and rectangular orifice die, respectively, Q is the volume flow rate, R is the 

capillary die radius, w and h is the width and the gap size of the rectangle die, 

respectively, PL,U and PL,P represents the pressure drop through a long die having 

circular and rectangular shape, respectively, L is the length of the long die. It should 



be mentioned that the long die has L/(2R) = 16 (or L/h = 16) whereas the orifice die 

has L/(2R) = 0.1208 (or L/h = 0.1208) as suggested in [10]. 

The maximum attainable extensional strain during abrupt contraction flow in the 

capillary rheometer can be calculated as 
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where Ab and Ad is the cross-sectional area of the barrel and the die, respectively 

[43]. The barrel diameter of the rheometer is 15mm, diameter of the circular die is 

2mm and gap size of the rectangular die is 0.5mm. According to Eq. 1 max  is 4 and 

3.6 for circular and rectangle orifice dies, respectively, and thus the average strain 

achievable in both die can be considered to be comparable. Importance of comparing 

the extensional viscosity at the same strain level is discussed in [43-45].  Note that 

high shear rate rheology was evaluated via 1mm diameter capillary dies. 

THEORETICAL 

 

Generalized Newtonian Fluid Model 

In this work, recently proposed generalized Newtonian fluid model has been 

utilized [36-37]: 
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where   means the extra stress tensor, D represents the deformation rate tensor and  

stands for the viscosity, which is not constant (as in the case of standard Newtonian 

law), but it is allowed to vary with the first invariant of the absolute value of 



deformation rate tensor  DtrI 
D

, (where D  is defined as DD  ) as well as on 

the second  2

D 2 DtrII  , and third,  DdetIII D , invariants of D according to Eq. 3 
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where  DII  is given by the well known Carreau-Yasuda model (with infinite 

viscosity   equal 0), Eq. 4 and  DDD
III,II,If  is given by Eq. 5 
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here A, 0, , a, n, α, ψ, ,  are 9 adjustable parameters and aT is temperature shift 

factor defined by the Arrhenius equation: 
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where Ea is the activation energy, R is the universal gas constant, Tr is the reference 

temperature and T is local temperature. 

   The model utilizes 4 parameters (0, , a, n) identifiable from shear viscosity, 4 

parameters (A, α, ,  ) identifiable from uniaxial extensional viscosity and 1 

parameter (ψ), which can be determined from planar extensional viscosity.  The key 

feature of this model is utilization of the new tensor called absolute value of 

deformation rate tensor, D , which characterizes deformation rate intensity in a 

particular direction (similarly to D) but without the information about its orientation 



(positive or negative). Its first invariant 
D

I
 
becomes nonzero in extensional flows and 

thus the model has capability to predict uniaxial as well as planar extensional 

viscosities [36]. 

Original Yao Model 

Original Yao model is a non-Newtonian fluid model with an objective vorticity 

tensor utilizing two different time scales for strain relaxation and rotation recovery 

[38]. Mathematically it takes the following form: 

SS DGB  2*              (6) 

where G is a modulus related to the chain structure, B* is an elastic strain tensor 

describing the conformation of the molecular coil  
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S is the slip viscosity defined as 
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where 
SDII is second invariant of deformation rate tensor for chain slip, DS, defined as 

follows 
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Here, L is the velocity gradient, 
*L  is the adjusted objective velocity gradient 

introduced by Yao in [38] to enforce that the calculated stretch of the polymer coil 

does not exceed the ceiling stretch S0. The symbol   represents projection onto the 



principal directions of B*. Even if the model utilizes 7 adjustable parameters (0, λ, S0, 

µS/η0, n0, K1, k where G=0/λ), its number is reduced to 6 for description of 

extensional flows because the parameter n0 disappears in such a cases. Thus, all 6 

original Yao model parameters (0, λ, S0, µS/η0, K1, k) were identified on the uniaxial 

extensional viscosity only. 

Extended Yao Model 

    Extended Yao model is a recently proposed non-Newtonian fluid model with finite 

stretch and rotational recovery utilizing specific finite chain dynamics to treat the 

combined effects of finite stretch and disentanglement [39], which reduce total 

number of model parameters from seven to five in comparison with the original Yao 

model. The extended Yao model is given by the following equations 
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where B is the generalized Finger tensor representing the elastic strain accumulated in 

the polymer coil and S is an equivalent stretch, defined as BBS ln:ln
6

1
 . The 

model utilizes 5 adjustable parameters (0, λ, S0, n0, β0), but its number is reduced to 4 

for description of extensional flows due to disappearance of the parameter n0 (i.e. 

similarly as in the case of original Yao model). Hence, all 4 extended Yao model 

parameters (0, λ, S0, β0) were identified on the uniaxial extensional viscosity only. It 



is important to mention that according to Yao [39], the β0 is the strain hardening 

parameter ( 10 0   ) and S0 is the celling stretch for disentanglement (typically in 

the range of 1 to 3).  

 

Modified White–Metzner Model 

Modified White-Metzner model constitutive equation is a simple Maxwell model 

for which the viscosity and relaxation time are allowed to vary with the second 

invariant of the strain rate deformation tensor [40]. It takes the following form: 

    DIIII DD 2 


                   (12) 

where 


  is the upper convected time derivative of stress tensor, D is the deformation 

rate tensor, IID is the second invariant of the rate of deformation tensor, λ(IID) stands 

for the deformation rate-dependent relaxation time and η(IID) is the deformation rate-

dependent viscosity. Although this modification improves the behaviour in steady 

shear flows, in extensional flows the model predicts unrealistic infinite extensional 

viscosity. This problem was overcome by Barnes and Roberts [40], who showed that, 

for specific functions of λ(IID) and η(IID) with (λ0/K2) < (√3/2) (see Eqs. (4) and (13)), 

the model does not predict infinite extensional viscosity and can be used for a very 

good description of extensional viscosity of a wide range of real polymer melts: 
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where λ0 and K2 are constants. Eqs. (4, 12-13) together with the physical constraint for 

λ0 and K2 mentioned above represent the modified White–Metzner model. The model 



utilizes 4 parameters (0, , a, n) identifiable from shear viscosity and 2 parameters 

(λ0, K2) identifiable from uniaxial extensional viscosity. 

 

Modified Leonov Model 

This constitutive equation is based on heuristic thermodynamic arguments resulting 

from the theory of rubber elasticity [41, 46-47]. Mathematically it is relating the stress 

and elastic strain stored in the material as: 
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where  is the stress, and W, the elastic potential, depends on the invariants I1 and I2 of  

the recoverable Finger tensor c, 
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where G denotes linear Hookean elastic modulus, ϕ and n1 are numerical parameters. 

Leonov assumed that dissipative process act to produce irreversible rate of strain ep  
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which spontaneously reduces the rate of elastic strain accumulation. Here,  is the unit 

tensor and b stands for dissipation function defined by Eq. (18).This elastic strain c is 

related to the deformation rate tensor D as follows 

 0 2
0

 peccDDcc    (17) 



where 
0

c  is the Jaumann (corotational) time derivative of the recoverable Finger strain 

tensor. In this work, the neo-Hookean potential (i.e. ϕ = n1 = 0 in Eq. 15) and the 

dissipation function b proposed in [42] (see Eq. 18), have been employed. 

       
  













13

3sinh
3exp

4

1

1

1
11

I

I
I

a
Ib

T 





     (18) 

Here,  and  are adjustable parameters which are allowed to vary with relaxation 

time, . Thus, the model utilizes relaxation spectrum (in terms of finite number of λi 

and Gi pairs for given modes) identifiable from loss and storage moduli and 2 

parameters (,) identifiable from uniaxial extensional viscosity.  

RESULTS AND DISCUSSION 

The generalized Maxwell model was employed to fit the measured frequency 

dependent loss and storage moduli for the tested LDPE material to generate discrete 

relaxation spectrum. Figure 3 shows that this model properly fits the measured data, 

which supports the reliability of the estimated relaxation spectrum. The Newtonian 

viscosity at 170oC (calculated from the relaxation spectrum) and the flow activation 

energy (determined via Arrhenius plot depicted in Figure 4) was found to be 4376.6 

Pa.s and 52.251 kJ/mol, respectively. 

The measured temperature-strain rate dependent uniaxial and planar extensional 

viscosities, together with the shear viscosity and model fits/predictions (model 

parameters are summarized in Tables 2-6), for the tested branched LDPE sample are 

provided in Figures 5-10.  



     First, the level of the strain hardening in uniaxial extensional viscosity is higher 

than in the planar extensional viscosity for the tested LDPE sample at all three 

temperatures (see Figures 5-6) which is in good agreement with the recent 

experimental work performed by D. Auhl et. al [33] on the cross-slot extensional 

rheometer. Experimental observation that the strain hardening is lower in planar 

extension than in uniaxial extension can be explained via differences in extensional 

flow kinematics and alignment strength (defined by Larson [48] as the strain 

invariants difference, I1-I2). In the uniaxial extension, material element is stretched in 

one direction and shrinks in another two directions, which leads to strong alignments 

of macromolecular chains along a single axis (I1-I2>0). However, in the planar 

extension, the chain alignment is neutral (I1-I2=0) because the material is stretched in 

one direction, shrinks in another direction but remains constant in the third direction 

[48]. This means that during uniaxial extension of polymer melts, alignment of 

macromolecular chains (i.e. the stress level) is much higher than in the case of planar 

extension. Thus, the observed higher extensional strain hardening of LDPE melt in 

uniaxial extension having 3D character can be attributed to more aligned and 

'constrained' chains in comparison with planar extension having only 2D nature. 

Moreover, the investigated LDPE melt is highly branched, i.e. when the stretched 

chains become sufficiently close to each other, new entanglements start to occur due 

the presence of chain branches, which increases the resistance against the extensional 

flow. Thus, entanglement network can be much more strengthened via presence of 

chain branches in the uniaxial extension due to 3D character of geometric 

condensation, in which chains moves close to each other more effectively, than in the 



case of 2D planar extension. This may explain the observed extensional flow 

behaviour for the investigated LDPE melt. 

 Second, the maximum in both viscosities is shifted to the higher strain rates for 

increased temperature. It has been revealed recently [49-54] that the ratio of planar to 

uniaxial extensional viscosity, ηE,P/ηE,U, (i.e. the difference between the strain-

hardening nature in planar and uniaxial elongation) controls the level of the unwanted 

neck-in phenomena (film width reduction occurring during the film casting process 

between the flat die and the chill/nip rolls) due to the fact that the middle of the film 

undergoes planar elongation whereas the material at the edge undergoes uniaxial 

elongation. Based on the film casting process modeling, the following relationship 

between neck-in, NI, and planar to uniaxial extensional viscosity ratio has recently 

been found [53]: 
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where WD represents the die exit width, WF the final film width, respectively, L is 

distance between the flat die and the chill/nip rolls and <ηE,P/ηE,U> is averaged planar 

to uniaxial extensional viscosity ratio. This suggests that the experimental evaluation 

of planar and uniaxial extensional viscosities can be considered as useful tool for 

optimization of the molecular structure of polymers utilized in the film casting 

technology to minimize neck-in phenomenon.     

Third, the generalized Newtonian and both Yao models have higher capability to 

describe temperature-strain rate dependent uniaxial and planar extensional viscosities 

for both tested samples in comparison with modified White-Metzner models as visible 



in Figures 8-10. This can be explained by the presence of additional parameter ψ in the 

generalized Newtonian model allowing to fit the deformation rate dependent planar 

extensional viscosity, which is not the case of the modified White-Metzner model. 

Even if the original Yao model shows a small tendency to over predict strain 

hardening in the measured planar extensional viscosity (see Figure 9), its overall 

capability to describe extensional rheology by using six physic-based material 

constants is very good due to implementation of finite stretch, disentanglement and 

slippage of polymer chains in this model. Surprisingly, the recently proposed four 

parameter extended Yao model shows even better capability to describe the measured 

extensional viscosity data than original six parameter Yao model due to its higher 

ability to predict planar extensional viscosity data as visible in Figure 9. This suggests 

that the extended Yao model is superior to the original Yao model. Interestingly, the 

modified Leonov model predictions, based on linear relaxation spectrum and non-

linear parameters ξ, ν identified on the strain-rate dependent uniaxial extensional 

viscosity only, are in very good agreement with the measured strain-rate dependent 

planar extensional viscosity, both measured at comparable strains (see Figure 10). 

This supports the physics behind the modified Leonov model as well as reliability and 

applicability of the performed measurements. It is important to mention that number 

of parameters utilized in the modified Leonov model is much higher in comparison to 

other tested models. It utilizes 12 modes discrete linear relaxation spectrum and 

additional 12 pairs of corresponding non-linear parameters ξ, ν identified from 

uniaxial extensional viscosity only (see Table 6). This makes the identification process 



for modified Leonov model much more complicated in comparison with low 

parametric models utilized in this work. 

 

At the end of this chapter, main limitations of the Cogswell method, possible 

experimental difficulties and suggestions how to overcome them are provided and 

discussed. 

 In the Cogswell method, inertia, shear normal stresses, Weissenberg-

Rabinowitsch correction, slip, and fluid compressibility are neglected [1, 6, 

17]. Thus the experimental set-up for the given polymer melt should be 

optimized to fulfil as much as possible the applied assumptions, where it is 

possible. For example, running experiments at higher temperatures should be 

preferred to minimize effect of shear elasticity, slip and melt compressibility.  

 Orifice dies having virtually zero length rather than extrapolation Bagley 

plot method should be preferred in order to minimize errors in the entrance 

pressure drop measurements due to slip, viscous heating and compressibility 

effects.       

 Even if the Cogswell method was found to be fairly accurate at high rates 

[11, 13, 45], it fails at low rates because the Trouton relationship is not handled 

correctly due to assumed kinematics [10, 55]. This problem can be overcome 

by using a specific orifice die having L/D ratio equal to 0.1208 as shown in 

[10]. 

 Improper orifice die design leads to unwanted wetting and accumulation of 

the polymer melt at the die exit region, which generates significant error in the 



form of additional pressure drop [9, 11, 35, 56-58]. This problem can be 

avoided by using orifice dies with highly opened downstream region [9, 11, 

34-35] (see Figures 1-2).  

 The flow is no homogeneous at the entry region of the die because mixed 

shear and extensional flow occur at the same time. In order to enhance the 

extensional flow components, abrupt 180o entry angle dies can be used. 

 Generated average values of extensional strain might be lower than those 

needed to reach steady state conditions. This can be overcome by increasing 

the barrel diameter and/or decreasing die diameter/gap size. 

CONCLUSION 

In this work, planar and uniaxial extensional viscosities for branched LDPE 

polymer melt has been determined through entrance pressure drop technique on 

conventional twin bore capillary rheometer by using novel circular and rectangle 

orifice dies and the obtained experimental data has been described by four different 

constitutive equations. It has been showed that chain branching causes the strain 

hardening occurrence in both, uniaxial and planar extensional viscosities and its 

maximum is shifted to the higher strain rates if the temperature is increased. The level 

of uniaxial extensional strain hardening for the branched LDPE sample has been found 

to be higher in comparison with the planar extensional viscosity within wide range of 

temperatures. It has been found that recently proposed non-Newtonian fluid model 

[36-37] and especially a few parametric extended Yao model [39] can represent steady 

shear, uniaxial and planar extensional viscosities for branched LDPE reasonably well. 

On the other hand, the modified White-Metzner model has failed in the prediction of 



the planar extensional viscosity. It has been revealed that the capability of the original 

Yao model to describe both measured extensional viscosities via few physics-based 

material parameters is good with small tendency to over predict strain hardening in the 

planar extensional viscosity. Moreover, it has been concluded that the extended Yao 

model is superior to original Yao model due to its higher overall capability to 

fit/predict measured extensional viscosity data by lower number of material 

parameters. Interestingly, the modified Leonov model predictions for the planar 

extensional viscosities have been revealed to be in very good agreement with the 

experimental data, which supports physics behind the model and reliability of the 

performed measurements. 

It is believed that the proposed novel orifice die design for the planar extensional 

viscosity measurements can be considered as a very useful tool for better 

understanding of the polymer melt molecular structure, processing instabilities, 

optimization of polymer blends composition as well as for the constitutive equation 

testing purposes.  
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Table 1. Cogswell model summarization for uniaxial/planar extensional viscosity determination [6, 12]. 
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TABLE 2.  Generalized Newtonian model parameters for T = 170°C 

0 

(Pa.s) 

λ 

(s) 

a 

(-) 

n 

(-) 

Α 

(s) 

β 

(-) 
 

(-) 

A1 

(Pa) 
 

(-) 

4376.6 0.2151 0.4919 0.3464 0.051671 0.0675 0.056076 2.4.10-5 8 

 

 

 
TABLE 3. Original Yao model parameters for T = 170°C 

η0 

(Pa.s) 

λ 

(s) 

S0 

(-) 

µS/ η0 

(-) 

K1 

(s) 

k 

(-) 

4376.6 0.08 1.54975 10.94593 3.15680 0.48774 

 

 

 
TABLE 4. Extended Yao model parameters for T = 170°C 

η0 

(Pa.s) 

λ 

(s) 

S0 

(-) 

β0 

(-) 

4376.6 0.3965 2.50607 0.08487 

 

 

 
TABLE 5.  Modified White-Metzner model parameters for T = 170°C 

0 

(Pa.s) 

λ 

(s) 

a 

(-) 

n 

(-) 

λ0 

(s) 

K2 

(s) 

4376.6 0.2151 0.4919 0.3464 0.936 1.1286 

 

 

 



TABLE 6.  Modified Leonov model parameters for T = 170°C 

 Maxwell parameters mLeonov model 

i i (s) Gi (Pa)   

1 0.00070958 83406.20000 0 1.000 

2 0.00221000 40900.00000 0 1.000 

3 0.00687000 14940.90000 2.000 0.025 

4 0.02137000 12444.40000 1.180 0.020 

5 0.06647000 5911.720000 0.750 0.020 

6 0.20680000 2964.370000 0.500 0.020 

7 0.64336000 1233.070000 0.100 0.020 

8 2.00152000 458.1260000 0.090 0.080 

9 6.22686000 95.86140000 0 1.000 

10 19.3721000 14.70970000 0 1.000 

11 60.2679000 4.097244707 0 1.000 

12 187.497000 0.071474080 0 1.000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 
 

 

 

FIGURE 1. Patented circular orifice die with abrupt entry utilized for uniaxial extensional viscosity 

measurements developed in [11, 34]. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 2. Patented rectangle dies for planar extensional viscosity measurements [35]. 2a) Sketch of 

the rectangle orifice die with abrupt entry. 2b) Set of rectangle dies for the planar extensional viscosity 

measurements on twin bore capilary rheometer (left – long die, right – novel orifice die). 

2a) 

2b) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 3. Comparison of Maxwell model with measured complex viscosity, storage and loss moduli 

for LDPE polymer in oscillatory shear flow at the reference temperature 170oC. 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.  Arrhenius plot for LDPE sample. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5.  Experimentally determined steady shear and uniaxial extensional viscosities for LDPE 

sample at three different temperatures (top – uniaxial extensional viscosity, bottom – shear viscosity). 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 6.  Experimentally determined steady shear and planar extensional viscosities for LDPE 

sample at three different temperatures (top – planar extensional viscosity, bottom – shear viscosity). 

 

 

 

 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 7. Comparison between the utilized generalized Newtonian/modified White-Metzner model 

fits (solid lines) and measured steady shear viscosities (symbols) for LDPE sample. 

 

 

 

 

 

 

 

 



 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 8. Comparison between the utilized Generalized Newtonian model fits/predictions (solid 

lines) and measured uniaxial and planar extensional viscosities (symbols) for LDPE sample at three 

different temperatures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 9. Comparison between the utilized model fits/predictions (solid lines) and measured uniaxial 

and planar extensional viscosities (symbols) for LDPE sample at three different temperatures (top – 

Original Yao model, bottom – Extended Yao model). 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 10. Comparison between the utilized model fits/predictions (solid lines) and measured 

uniaxial and planar extensional viscosities (symbols) for LDPE sample at three different temperatures 

(top – Modified White-Metzner model, bottom – Modified Leonov model model). 

 

 

 

 


