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Abstract. In this work, novel patent pending rectangle orifice die design has been proposed and 
tested for planar extensional viscosity measurements of extrusion coating LDPE through 
entrance pressure drop determination on conventional twin bore capillary rheometr. The 
obtained results have been compared with the corresponding uniaxial extensional viscosity data 
and different strain hardening level in both viscosities has been identified. It has been suggested 
that uniaxial and planar extensional viscosity measurements, utilizing novel orifice die design, 
can be considered as a very useful and simple tool to fulfill basic aims of the applied rheology.  
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INTRODUCTION 

The extensional viscosity, characterizing the resistance of the fluid against the 
extensional flow, is one of the key rheological parameters which play a crucial role in 
manufacturing processes as well as it is very sensitive to the molecular structure of the 
fluid. Due to the fact that generation and control of the extensional flow is difficult, 
experimental determination of the extensional viscosity is a problem [1-2]. Different 
types of experimental techniques have been developed [1-16] to measure this very 
important property but each of them is applicable for only limited range of extensional 
rates or stresses. Probably the most challenging rheological task is experimental 
determination of planar extensional viscosity as one can see from very small numbers 
of experimental data available in the open literature [1-2, 12-16]. In this work, novel 
patent pending orifice die has been developed and tested for planar extensional 
viscosity measurements by using standard twin bore capillary rheometer and Cogswell 
model [6, 12]. 
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EXPERIMENTAL 

Novel Orifice Die Design 

The sketch of the novel orifice die design for planar extensional viscosity 
measurements is depicted in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 1. Sketch of the novel patent pending orifice die with abrupt entry for planar extensional 

viscosity measurements. 
 
 
The proposed die design is characterized by the open downstream region which 
consists of highly diverging channel and four holes which enable to use special key to 
crew-up the orifice die to the rheometer barrel. This downstream orifice die geometry 
eliminates any possibility for artificial pressure increase due to polymer melt touching 
the downstream wall.  
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Experimental Evaluation of Novel Orifice Die Design 

Extrusion coating LDPE CA820 (MFR=7.5 g/10min at 190°C/2.16kg) from 
Borealis Polyolefine GmbH company together with Rosand RH7-2 twin bore capillary 
rheometer have been utilized for the experimental determination of planar extensional 
viscosity by using long die and novel orifice dies (both having rectangle flow channel) 
depicted in Figure 2.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 2. Set of patent pending dies for the planar extensional viscosity measurements on twin bore 

capilary rheometer which have been utilized in this work (left – long die, right – novel orifice die). 
 
 
 
The uniaxial extensional viscosity data has been determined by using annular orifice 
die (CZ UV 19221) depicted in Figure 3. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 3. Sketch of the circular orifice die (CZ UV 19221) with abrupt entry for uniaxial extensional 
viscosity measurements developed in [11]. 
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The uniaxial and planar extensional viscosities have been determined through entrance 
pressure drop measurements by using the Cogswell model [6, 12] (see Table 1). 

 
 
Table 1. Cogswell model summarization for uniaxial/planar extensional viscosity determination [6, 12]. 
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Here P0,U and P0,P represents the entrance pressure drop measured on annular and 
rectangular orifice die, respectively, Q is the volume flow rate, R is the capillary die 
radius, w and h is the width and the gap size of the rectangle die, respectively, PL,U 
and PL,P represents the pressure drop through a long die having circular and 
rectangular shape, respectively, P0,U and P0,P is the orifice pressure drop having 
circular and rectangular shape, respectively, L is the length of the long die. It should 
be mentioned that the long die has L/(2R)=16 (or L/h=16) whereas the orifice die has 
L/(2R)=0.1208 (or L/h=0.1208) as suggested in [10]. 
   

RESULTS AND DISCUSSION 

The comparison between the measured strain rate dependent uniaxial and planar 
extensional viscosities (together with the shear viscosity) for the tested extrusion 
coating LDPE CA820 sample is depicted in Figure 4. It is clearly visible that both 
planar and uniaxial extensional viscosities correctly follow 4�0 and 3�0 Trouton 
relationship, respectively, at low extensional strain rates. Interestingly, the level of the 
strain hardening in uniaxial extensional viscosity is much higher than in the planar 
extensional viscosity, which is more clearly visible in Figure 5 where normalized 
uniaxial and planar extensional viscosities are plotted as the function of the 
extensional strain rate.    
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FIGURE 4. Comparison between measured strain rate dependent uniaxial and planar extensional 

viscosities (together with the shear viscosity) for the tested extrusion coating LDPE CA820 polymer 
sample at 190°C. 

 
 

Recently, it has been revealed [17-21] that the ratio of planar to uniaxial 
extensional viscosity, �E,P/�E,U, (i.e. the difference between the strain-hardening nature 
in planar and uniaxial elongation) controls the level of the unwanted neck-in 
phenomena (film width reduction occurring during the film casting process between 
the flat die and the chill/nip rolls) due to the fact that the middle of the film undergoes 
planar elongation whereas the material at the edge undergoes uniaxial elongation. 
Based on the film casting process modeling, the following relationship              
between neck-in, NI, and planar to uniaxial extensional viscosity ratio has recently 
been found [21]: 
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where WD represents the die exit width, WF the final film width, respectively, L is 
distance between the flat die and the chill/nip rolls and <�E,P/�E,U> is averaged planar 
to uniaxial extensional viscosity ratio. This suggests that the experimental evaluation 
of planar and uniaxial extensional viscosities can be considered as very useful tool for 
the film casting process optimization. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 5. Comparison between normalized uniaxial and planar extensional viscosities for the tested 

extrusion coating LDPE CA820 polymer sample at 190oC. 
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It is believed that the proposed novel orifice die design for the planar extensional 
viscosity measurements can be considered as a very useful tool for better 
understanding of the polymer melt molecular structure, processing instabilities, 
optimization of polymer blends composition as well as for the constitutive equation 
testing purposes. 
 

CONCLUSION 

Novel patent pending rectangle orifice die design has been proposed and tested for 
the planar extensional viscosity measurements of extrusion coating LDPE through 
entrance pressure drop measurements on standard twin bore capillary rheometr. The 
obtained results have been compared with the corresponding uniaxial extensional 
viscosity data. It has been revealed that the level of the strain hardening in uniaxial 
extensional viscosity is higher than in the planar extensional viscosity for the 
particular tested sample. It is believed that the proposed rectangle orifice die design 
together with particular entrance pressure drop technique can be useful and simple tool 
to determine planar extensional viscosity for basic rheological purposes.  
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