Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,4-Dichloroguinoline

Roman Kimmel,^a Marek Nečas^b and Robert Vícha^a*

^aDepartment of Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Nám. T.G. Masaryka 275, Zlín, 762 72, Czech Republic, and ^bDepartment of Chemistry, Faculty of Science, Masaryk University in Brno, Kamenice 5, Brno-Bohunice, 625 00, Czech Republic Correspondence e-mail: rvicha@ft.utb.cz

Received 8 April 2010; accepted 28 April 2010

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.002 Å; R factor = 0.021; wR factor = 0.066; data-to-parameter ratio = 13.5.

The asymmetric unit of the title compound, C₉H₅Cl₂N, consists of two crystallographically independent molecules. In both molecules the quinoline ring system is essentially planar [maximum deviations from the best plane of 0.0232 (13) 0.0089 (15) Å]. The angle between these planes is 22.40 (3)°. Conformers A and B are arranged face-to-face along the caxis, forming alternating pairs in the order AABB. The interplanar distances AA, AB and BB are 3.3166 (11), 3.2771 (11) and 3.3935 (11) Å, respectively. The crystal packing is stabilized by weak C-H···Cl and C-H···N interactions.

Related literature

For previous syntheses of title compound, see: Baeyer & Bloem (1882); Steinschifter & Stadlbauer (1994). For the use of the title compound in organic synthesis, see: Buchmann & Hamilton (1942).

Experimental

Crystal data C₉H₅Cl₂N $M_r = 198.04$

Monoclinic, $P2_1/n$ a = 10.3689 (3) Å

b = 11.9215 (3) Å c = 13.6380 (5) Å $\beta = 98.937 (3)^{\circ}$ V = 1665.37 (9) Å³ Z = 8

Data collection

Kuma KM-4-CCD diffractometer	13224 measured reflections
Absorption correction: multi-scan	2927 independent reflections
(CrysAlis RED; Oxford	2504 reflections with $I > 2\sigma(I)$
Diffraction, 2006)	$R_{\rm int} = 0.012$
$T_{\min} = 0.60, \ T_{\max} = 0.81$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.021$	217 parameters
$wR(F^2) = 0.066$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.25 \text{ e } \text{\AA}^{-3}$
2927 reflections	$\Delta \rho_{\rm min} = -0.22 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C2-H2A\cdots Cl4$	0.95	2.88	3.7197 (14)	148
$C17 - H17A \cdots N1^{i}$ $C18 - H18A \cdots C11^{i}$	0.95 0.95	2.60 2.95	3.5111 (19) 3.7290 (15)	162 141

Symmetry code: (i) x, y + 1, z.

Data collection: CrvsAlis CCD (Oxford Diffraction, 2006): cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

The financial support of this work by the Czech Ministry of Education, project No. MSM 7088352101, and the Tomas Bata Foundation is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2343).

References

Baeyer, A. & Bloem, F. (1882). Ber. Dtsch. Chem. Ges. 15, 2147-2155.

- Buchmann, F. J. & Hamilton, C. S. (1942). J. Am. Chem. Soc. 64, 1357-1360. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
- Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Steinschifter, W. & Stadlbauer, W. (1994). J. Prakt. Chem. 336, 311-318.

Mo $K\alpha$ radiation

 $0.40 \times 0.40 \times 0.30$ mm

 $\mu = 0.71 \text{ mm}^-$

T = 120 K

supplementary materials

Acta Cryst. (2010). E66, o1261 [doi:10.1107/S160053681001576X]

2,4-Dichloroquinoline

R. Kimmel, M. Necas and R. Vícha

Comment

Although the 2,4-dichloroquinoline is well known for more than hundred years (Baeyer & Bloem, 1882) and has been widely used in quinoline chemistry (Buchmann & Hamilton, 1942; Steinschifter & Stadlbauer, 1994), no structure data has been published so far.

The title compound (Fig. 1) crystallises with two crystallographical independent molecules in asymmetric unit. Conformers A and B differ very little in geometrical parameters. Both of them consist of essentially planar quinoline ring with maximum deviations from the best planes being 0.0232 (13) Å for atom C2 (conformer A) and 0.0089 (15) Å for atom C17 (conformer B). The angle between these quinoline best planes is 22.40 (3)°. Chlorine atoms lay almost in the ring best planes with the deviations 0.0035 (4) Å for atom C11 and -0.0011 (4) for atom C12 (conformer A) and -0.0081 (4) Å for atom C13 and 0.0121 (4) Å for atom C14 (conformer B). Pairs of conformers are stacked along the *c* axes in AABB arrangement stabilised via offset π - π interactions. The distances between AA, AB and BB planes calculated as a distance of nitrogen atom from adjacent ring plane are 3.3166 (11), 3.2771 (11) and 3.3935 (11) Å, respectively. Molecular packing is stabilised by C—H…Cl and C—H…N weak interactions (Fig. 2, Table 1).

Experimental

4-Hydroxyquinolin-2-one (322 mg, 2 mmol) and POCl₃ (2 ml) were treated for 15 min. at 100°C. Reaction mixture was poured onto finely crushed ice to decompose an excess of POCl₃. Basicity was adjusted to pH = 8 using Na₂CO₃ and resulting precipitate was filtered off. The solid on the filter was washed with water and dried at room temperature to yield 292 mg (74%) of title compound. The single crystal used for data collection was obtained by crystallisation from diethyl ether at room temperature.

Figures

Fig. 1. Ellipsoid plot of the asymmetric unit with atoms represented as 50% probability ellips-

Fig. 2. Eight molecules lying around an inversion centre and viewed along the *c* axis are coloured by symmetry equivalence. The H-bond cross-linkage framework is drawn in the front layer by dotted lines.Hydrogen atoms are omitted except for those participating in H-bonds. Symmetry codes: (i) -x+0.5, y+0.5, -z+0.5; (ii) -x+0.5, y-0.5, -z+0.5.

2,4-Dichloroquinoline

Crystal data
C ₉ H ₅ Cl ₂ N
$M_r = 198.04$
Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
<i>a</i> = 10.3689 (3) Å
<i>b</i> = 11.9215 (3) Å
c = 13.6380(5) Å
$\beta = 98.937 \ (3)^{\circ}$
$V = 1665.37 (9) \text{ Å}^3$
Z = 8

Data collection

Kuma KM-4-CCD diffractometer	2927 independent reflections
Radiation source: fine-focus sealed tube	2504 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.012$
ω scan	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.9^{\circ}$
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006)	$h = -12 \rightarrow 12$
$T_{\min} = 0.60, \ T_{\max} = 0.81$	$k = -14 \rightarrow 14$
13224 measured reflections	$l = -16 \rightarrow 13$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.021$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.066$	H-atom parameters constrained
<i>S</i> = 1.08	$w = 1/[\sigma^2(F_o^2) + (0.041P)^2 + 0.2572P]$ where $P = (F_o^2 + 2F_c^2)/3$
2927 reflections	$(\Delta/\sigma)_{\rm max} = 0.005$

217 parameters	$\Delta \rho_{max} = 0.25 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2^2 . The threshold expression of $F^2^2 > \sigma(F^2^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.13384 (3)	0.03305 (3)	0.08803 (3)	0.02540 (11)
Cl2	0.52857 (3)	0.32412 (3)	0.17438 (3)	0.02529 (11)
C13	-0.36457 (3)	0.59016 (3)	0.06753 (3)	0.02745 (11)
Cl4	0.02870 (3)	0.30160 (3)	0.16841 (3)	0.02323 (11)
C1	0.30194 (13)	0.05798 (11)	0.10998 (10)	0.0179 (3)
C2	0.34206 (13)	0.16982 (11)	0.12943 (10)	0.0184 (3)
H2A	0.2808	0.2290	0.1297	0.022*
C3	0.47285 (13)	0.18864 (11)	0.14782 (10)	0.0170 (3)
C4	0.56380 (13)	0.09974 (11)	0.14534 (9)	0.0174 (3)
C5	0.70140 (13)	0.11242 (12)	0.16231 (10)	0.0218 (3)
H5A	0.7389	0.1842	0.1779	0.026*
C6	0.78035 (14)	0.02124 (13)	0.15621 (11)	0.0262 (3)
H6A	0.8725	0.0303	0.1677	0.031*
C7	0.72627 (14)	-0.08561 (13)	0.13307 (10)	0.0252 (3)
H7A	0.7821	-0.1479	0.1285	0.030*
C8	0.59391 (14)	-0.10019 (12)	0.11718 (10)	0.0217 (3)
H8A	0.5585	-0.1728	0.1021	0.026*
C9	0.50939 (13)	-0.00843 (11)	0.12290 (9)	0.0171 (3)
N1	0.37727 (11)	-0.02819 (9)	0.10649 (8)	0.0178 (3)
C11	-0.19672 (13)	0.56562 (11)	0.09168 (10)	0.0185 (3)
C12	-0.15678 (13)	0.45494 (11)	0.11711 (10)	0.0179 (3)
H12A	-0.2182	0.3964	0.1204	0.022*
C13	-0.02595 (13)	0.43615 (11)	0.13660 (9)	0.0165 (3)
C14	0.06551 (13)	0.52382 (11)	0.13046 (9)	0.0175 (3)
C15	0.20256 (13)	0.51151 (12)	0.14938 (10)	0.0217 (3)
H15A	0.2400	0.4406	0.1684	0.026*
C16	0.28175 (14)	0.60210 (13)	0.14029 (11)	0.0274 (3)
H16A	0.3739	0.5931	0.1530	0.033*
C17	0.22853 (15)	0.70773 (13)	0.11250 (11)	0.0281 (4)
H17A	0.2847	0.7694	0.1063	0.034*
C18	0.09590 (15)	0.72227 (12)	0.09421 (10)	0.0248 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supplementary materials

H18A	0.0607	0.7941	0.0756	0.030*
C19	0.01108 (13)	0.63129 (11)	0.10277 (10)	0.0183 (3)
N2	-0.12097 (11)	0.65102 (9)	0.08387 (8)	0.0200 (3)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.01550 (19)	0.0246 (2)	0.0355 (2)	-0.00423 (13)	0.00217 (15)	-0.00300 (15)
C12	0.0226 (2)	0.01604 (18)	0.0354 (2)	-0.00448 (13)	-0.00113 (16)	-0.00104 (14)
C13	0.0184 (2)	0.0270 (2)	0.0358 (2)	0.00475 (14)	0.00067 (15)	0.00256 (16)
Cl4	0.0236 (2)	0.01571 (18)	0.0307 (2)	0.00392 (13)	0.00519 (15)	0.00299 (13)
C1	0.0150 (7)	0.0223 (7)	0.0163 (7)	-0.0019 (5)	0.0016 (6)	0.0001 (5)
C2	0.0180 (7)	0.0169 (7)	0.0202 (7)	0.0016 (5)	0.0027 (6)	0.0009 (5)
C3	0.0210 (7)	0.0151 (7)	0.0145 (7)	-0.0023 (5)	0.0011 (6)	0.0006 (5)
C4	0.0188 (7)	0.0208 (7)	0.0122 (7)	0.0017 (5)	0.0016 (5)	0.0024 (5)
C5	0.0175 (7)	0.0274 (8)	0.0203 (7)	-0.0019 (6)	0.0021 (6)	0.0027 (6)
C6	0.0165 (7)	0.0394 (9)	0.0225 (8)	0.0053 (6)	0.0020 (6)	0.0050 (7)
C7	0.0258 (8)	0.0320 (8)	0.0179 (8)	0.0129 (6)	0.0038 (6)	0.0032 (6)
C8	0.0294 (8)	0.0197 (7)	0.0162 (7)	0.0053 (6)	0.0043 (6)	0.0007 (6)
C9	0.0201 (7)	0.0202 (7)	0.0108 (7)	0.0016 (6)	0.0019 (5)	0.0022 (5)
N1	0.0198 (6)	0.0172 (6)	0.0161 (6)	-0.0011 (5)	0.0018 (5)	0.0001 (5)
C11	0.0183 (7)	0.0204 (7)	0.0167 (7)	0.0016 (5)	0.0023 (6)	-0.0016 (5)
C12	0.0195 (7)	0.0175 (7)	0.0174 (7)	-0.0023 (5)	0.0047 (6)	-0.0007 (5)
C13	0.0212 (7)	0.0149 (7)	0.0134 (7)	0.0020 (5)	0.0033 (6)	-0.0004 (5)
C14	0.0205 (7)	0.0195 (7)	0.0131 (7)	-0.0012 (6)	0.0041 (6)	-0.0033 (5)
C15	0.0192 (7)	0.0259 (8)	0.0201 (7)	0.0003 (6)	0.0037 (6)	-0.0035 (6)
C16	0.0198 (8)	0.0365 (9)	0.0263 (8)	-0.0075 (6)	0.0048 (6)	-0.0073 (7)
C17	0.0292 (9)	0.0296 (8)	0.0261 (8)	-0.0146 (7)	0.0060 (7)	-0.0049 (7)
C18	0.0336 (9)	0.0177 (7)	0.0234 (8)	-0.0061 (6)	0.0060 (6)	-0.0029 (6)
C19	0.0228 (7)	0.0186 (7)	0.0138 (7)	-0.0017 (6)	0.0039 (6)	-0.0035 (5)
N2	0.0239 (7)	0.0165 (6)	0.0198 (6)	0.0008 (5)	0.0040 (5)	-0.0006 (5)

Geometric parameters (Å, °)

Cl1—C1	1.7475 (13)	С8—Н8А	0.9500
Cl2—C3	1.7345 (13)	C9—N1	1.3738 (17)
Cl3—C11	1.7450 (14)	C11—N2	1.3003 (18)
Cl4—C13	1.7338 (13)	C11—C12	1.4100 (18)
C1—N1	1.2959 (17)	C12—C13	1.3598 (19)
C1—C2	1.4096 (18)	C12—H12A	0.9500
C2—C3	1.3589 (19)	C13—C14	1.4225 (19)
C2—H2A	0.9500	C14—C15	1.4120 (19)
C3—C4	1.4225 (18)	C14—C19	1.4270 (19)
C4—C5	1.4175 (19)	C15—C16	1.374 (2)
C4—C9	1.4217 (19)	C15—H15A	0.9500
C5—C6	1.371 (2)	C16—C17	1.403 (2)
С5—Н5А	0.9500	C16—H16A	0.9500
C6—C7	1.408 (2)	C17—C18	1.370 (2)
С6—Н6А	0.9500	C17—H17A	0.9500

С7—С8	1.367 (2)	C18—C19	1.4126 (19)
С7—Н7А	0.9500	C18—H18A	0.9500
C8—C9	1.4114 (19)	C19—N2	1.3736 (18)
N1—C1—C2	126.50 (12)	N2-C11-C12	126.50 (13)
N1—C1—Cl1	116.73 (10)	N2-C11-Cl3	116.78 (10)
C2—C1—Cl1	116.77 (10)	C12—C11—Cl3	116.72 (10)
C3—C2—C1	116.60 (12)	C13—C12—C11	116.62 (12)
C3—C2—H2A	121.7	C13—C12—H12A	121.7
C1—C2—H2A	121.7	C11—C12—H12A	121.7
C2—C3—C4	121.26 (12)	C12—C13—C14	121.43 (12)
C2—C3—Cl2	118.87 (10)	C12—C13—Cl4	118.60 (10)
C4—C3—Cl2	119.88 (10)	C14—C13—Cl4	119.97 (10)
C5—C4—C3	124.81 (12)	C15—C14—C13	125.04 (13)
C5—C4—C9	119.18 (12)	C15—C14—C19	119.15 (12)
C3—C4—C9	116.01 (12)	C13—C14—C19	115.81 (12)
C6—C5—C4	120.06 (13)	C16—C15—C14	120.03 (14)
С6—С5—Н5А	120.0	C16—C15—H15A	120.0
С4—С5—Н5А	120.0	C14—C15—H15A	120.0
C5—C6—C7	120.67 (13)	C15—C16—C17	120.95 (14)
С5—С6—Н6А	119.7	C15—C16—H16A	119.5
С7—С6—Н6А	119.7	C17—C16—H16A	119.5
C8—C7—C6	120.38 (13)	C18—C17—C16	120.28 (13)
С8—С7—Н7А	119.8	С18—С17—Н17А	119.9
С6—С7—Н7А	119.8	С16—С17—Н17А	119.9
С7—С8—С9	120.63 (13)	C17—C18—C19	120.54 (14)
С7—С8—Н8А	119.7	C17—C18—H18A	119.7
С9—С8—Н8А	119.7	C19—C18—H18A	119.7
N1—C9—C8	118.04 (12)	N2-C19-C18	117.92 (12)
N1—C9—C4	122.89 (12)	N2-C19-C14	123.03 (12)
C8—C9—C4	119.07 (12)	C18—C19—C14	119.04 (12)
C1—N1—C9	116.71 (11)	C11—N2—C19	116.59 (11)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$
C2—H2A···Cl4	0.95	2.88	3.7197 (14)	148
C17—H17A···N1 ⁱ	0.95	2.60	3.5111 (19)	162
C18—H18A…Cl1 ⁱ	0.95	2.95	3.7290 (15)	141
Symmetry codes: (i) $x, y+1, z$.				

