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Abstract 
The sedimentation caused by the high density of suspended particles used in magnetorheological fluids is a 

significant obstacle for their wider application. In the present paper, core-shell structured carbonyl iron-

polyaniline particles in silicone oil were used as a magnetorheological suspension with enhanced dispersion 

stability. Bare carbonyl iron particles were suspended in silicone oil to create model magnetorheological 

suspensions of different loading. For a magnetorheological suspension of polyaniline-coated particles the 

results show a decrease in the base viscosity. Moreover, the polyaniline coating has a negligible influence 

on the MR properties under an external magnetic field B. The change in the viscoelastic properties of 

magnetorheological suspensions in the small-strain oscillatory shear flow as a function of the strain 

amplitude, the frequency and the magnetic flux density was also investigated. 

1. Introduction 

Magnetorheological fluid (MRF) is a suspension consisting of solid 

micrometer-sized magnetically polarizable particles dispersed in a non-

magnetic carrier liquid such as mineral oil, which reversibly transforms 

from a liquid to a solidlike structure under an applied magnetic field in 

milliseconds. The transformation between these two states is due to the 

formation of chain clusters in the direction of the exerted external field, 

which has a consequence in changes of the rheological properties, such 

as the increase of the apparent yield stress and the shear viscosity [1, 2]. 

The importance of MRFs has considerably increased in the last 15 

years. This is caused by the continuous growth of concrete applications 

utilizing these smart materials in many areas like damping systems [3], 

clutches [4], drug targeting [5, 6], prosthetic 

knees [7], etc. Many recent studies have also focused on the heating of 

ferrofluid (nanometer-sized ferromagnetic particles suspended in a 

carrier fluid) to achieve hyperthermia (the heating of certain tissues to 

temperatures between 41 and 46 °C) in cancer therapy [8]. 
However, since the density of the magnetic particles used for the 

MRF is considerably higher than that of the liquid phase, sedimentation 

represents a significant problem in the development of MRFs suitable 

for practical applications. The driving force of the sedimentation is the 

gravity that dominates in comparison with the Brownian motion for 

particles larger than approximately 0.1 ¡im. Nevertheless, if smaller 

particles are used, the Brownian motion also hinders the formation of 

internal structures in the fluid in a magnetic field. Thus the optimum 

particle size is in the range of 0.1-10 ¡xm and further improvement of 

MRFs stability is necessary. Several 



studies have been done to alter the sedimentation, e.g., the addition of 

thixotropic additives [9], non-spherical particles [2] to the suspension, or 

the choice of water-in-oil emulsion as a continuous phase [10]. 

Nevertheless, the additions of stabilization particles may deteriorate the 

chain structure of MR particles in external fields. A very interesting 

possibility of how to suppress sedimentation consists in an application 

of core-shell structures, where a magnetic particle creates either the core 

[11-15] or the shell [16, 17]. The former case represents different types 

of coatings improving the chemical and oxidation stability [18]. To 

prevent eventual fragmentation in shearing, the latter case requires a 

good bonding of the shell to the non-magnetic core. Both variants result 

in a decrease of the density of the dispersed phase, which improves the 

sedimentation stability and may also promote the MR effect of this 

smart system. This effect is defined as a difference between apparent 

viscosities in the absence and presence of the applied magnetic field. 
Suspensions of carbonyl iron coated with a conducting polymer 

and carbon nanotubes have been proposed as a new type of MRF [14]. 

In the present study, core-shell composite particles with a carbonyl iron 

(Cl) magnetic core and poly aniline (PANI) conducting shell were 

prepared by using a PANI colloidal dispersion in chloroform [18]. The 

effects of the PANI coating on the viscosity and MR properties, 

including the viscoelastic properties of the MR fluid containing core-

shell particles stabilized further by fumed silica dispersed in silicone 

oil, have been evaluated. 

2. Experimental details 

2.7. Materials 

For a model particle-suspended system, carbonyl iron (EA grade, 

BASF, Germany) and PANI were selected as a core and shell, 

respectively. The main material characteristics of bare Cl according to 

the product information (G-CAS/BS0106 CIP2) are: the spherical shape 

of the particles with an average size of about 3.5 jjum, the content of a-

iron >97%, and the silicated surface. The other chemicals for the PANI 

coating were of reagent grade (purchased from Sigma-Aldrich, USA). 

2.2. Coating of Cl powder by PANI 

A schematic diagram of the Cl particles coated with PANI is provided 

in figure 1. Briefly, the polymerization of aniline with ammonium 

peroxydisulfate was performed at room temperature in a 

chloroform/water emulsion in the presence of a sodium bis-(2-

ethylhexyl) sulfosuccinate surfactant. These reaction conditions led to 

the separation of the colloidal dispersion of the PANI into the 

chloroform phase [18, 19]. Cl was subsequently suspended in the PANI 

colloid in chloroform, separated on a filter, and dried. 

2.3. Characterization of particles and magnetorheological fluids 

The surface characteristics of the core-shell particles with a Cl core and 

PANI shell were observed with SEM (scanning 

Figure 1. Schematic diagram of the synthesis of CI-PANI core-shell 
particles. 
(This figure is in colour only in the electronic version) 

electron microscope VEGA II LMU, Tescan, Czech Republic) operated 

at 10 kV. The magnetic properties of the microspheres were examined 

using a VSM (vibration sample magnetometer, EG&G PARC 704, Lake 

Shore, USA) at room temperature. 
MR fluid containing 60 and 80 wt% of bare Cl and its PANI-

coated analogue in silicone oil (Lukosiol Ml5, Chemical Works Kolin, 

Czech Republic; viscosity 14.5 mPa s, density 0.965 g cm-3) were 

prepared. In both cases 0.5 wt% of nano-silica (average particle size 

~10 nm, Aerosil A 200, Degusa, Germany) was added. The suspensions 

were mechanically stirred before each measurement. The MR 

characteristics in steady shear and oscillatory regimes of the 

suspensions were examined using a Physica MCR501 rotational 

rheometer (Anton Paar GmbH, Austria) with a Physica MRD 180/IT 

magneto-cell at 25 and 40 °C. The true magnetic flux density was 

measured using a Hall probe and the temperature was checked with the 

help of an inserted thermocouple. Both the Hall probe and the 

thermocouple were rectangular, located in the bottom plate; for details 

see [20]. The temperature was set using an Anton Paar Viscotherm VT2 

circulator with a temperature stability ±0.02 °C. The maximum 

magnetic flux density used in all the measurements did not exceed 0.3 

T, to ensure the sufficient homogeneity of the magnetic field 

perpendicular to the shear flow direction. A parallel-plate measuring 

system with a diameter of 20 mm and gap of 1 mm was used. 

3. Results and discussion 

3.1. Micro structure of particles 

Figure 2 shows the size and surface morphology of both bare Cl (a) and 

carbonyl iron-polyaniline (CI-PANI) core- shell particles (b) observed 

by SEM. The average size of the particles was slightly larger than that 

of the bare Cl particles as a result of the coating layer not exceeding 0.5 

¡im. Moreover, the encapsulated particles with a smoother surface kept 

their spherical shape, which confirms the uniform and complete 

coating. 

3.2. Magnetic properties of particles 

The magnetization curve measurements of the bare Cl powder and its 

PANI-coated analogue are depicted in figure 3. The 



Figure 2. SEM images of (a) bare Cl and (b) CI-PANI particles.

Figure 3. VSM image of bare Cl (dashed line) and CI-PANI (solid 
line) particles. 

saturation magnetization for the PANI-coated Cl particles is 

comparable with uncoated CL Hence, there is no significant influence 

of the polymeric coating on the magnetic properties, and an MR 

suspension based on CI-PANI core-shell particles exhibits similar MR 

performance as in the case of bare CI. Moreover, CI-PANI particles 

possess almost zero coercive force, which is the requested factor in 

cyclic applications for the maintenance of isothermal conditions in the 

system. 

3.3. Steady shear and yield stress 

The rheological behavior of MR fluids based on CI and CI- PANI 

particles was investigated in the controlled shear-rate mode. In all 

measurements the range of the shear rate tested was from 0.1 to 600 s-1 

in a log scale with 6 pts/decade. The resulting flow responses were 

examined as a function of the magnetic flux density ranging from 0 to 

0.3 T. During each run under a magnetic field, the MR fluid was first 

sheared (y = 100 s_1) at a zero field for 60 s to distribute the particles 

uniformly and after the measurement the system was 

Figure 4. Ratio of shear stresses with/without a magnetic field (tm/to) 
versus shear rate, ]>, for CI-PANI particles’ (solid) and CI particles’ 
(open) MR suspensions (80 wt%) in silicone oil in various magnetic fields 
applied at 25 °C. The symbols for the magnetic flux densities (mT): v 99; 
□ 205; and A 308. 

completely demagnetized. Figure 4 shows the proportional changes of 

the MR effect expressed as a ratio of the shear stresses with/without a 

magnetic field for MR suspensions based on CI-PANI particles (solid 

symbols) and CI particles (open symbols). A noticeable increase in the 

shear stress with magnetic flux density is a typical feature of MR fluids 

and is caused by the formation of a robust chain structure [1]. Such a 

strong dependence on the external field is similar to the phenomenon 

observed for ER fluids [21], The systems in figure 4 can be 

characterized by a Bingham plastic model with a yield stress, meaning 

that the suspension acts as a solidlike material when exposed to an 

external shear stress below this yield stress. In other words, the 

structure formed in the MR fluid by the magnetic field is sufficiently 

rigid to withstand certain deforming stresses without any external 

manifestation of flowing. In comparison with the literature [14], the 

smoother 



Figure 5. Ratio of the shear stresses with/without a magnetic field (tm/to) 
versus shear rate, y, for core-shell particles based the MR suspensions in the 
various magnetic fields applied at 25 °C (solid) and 40 °C (open). The 
symbols for the magnetic flux densities (mT): ▼ 97; ■ 196; A 297. 

particles (CI-PANI) with nano-silica added used in this work seem to 

provide a reduction of the off-state viscosity and improve the 

sedimentation stability. 
As can be seen in figure 4, the proportional change of the MR 

effect is higher in the case of the core-shell particles, which is due to 

lower zero field shear stress and viscosity of the MR suspension and 

confirms the fact that PANI coating reduces the density of suspended 

particles. 
Furthermore, the MR effect defined as a difference between the 

flow curves in zero and applied magnetic fields can be increased by 

elevating the temperature. Figure 5 shows the proportional changes of 

the MR effect expressed as the ratio of shear stresses with/without a 

magnetic field for MR fluids with CI-PANI particles measured at 25 

and 40 °C. It is worth noting that, in the absence of a magnetic field the 

system exhibits more Newtonian behavior at elevated temperatures due 

to stronger thermodynamic forces. However, the magnetic forces start 

to dominate over the thermodynamic ones in an applied magnetic field 

and the flow curves are very similar at both temperatures. Thus, the MR 

effect is higher at higher temperature. 
In figure 6, the dynamic yield stresses of two different 

concentrations of MR suspensions based on Cl and CI-PANI particles 

are shown as a function of the applied magnetic flux density B. The 

yield stresses in all cases increase with the external magnetic field 

following the dependence of the magnetic flux density in the range Bl  5-

2. This value slightly deviates from the numerical and analytical models, 

according to which the dependence of the magnetic flux density is a 

consequence of the local saturation of the magnetization in the polar or 

contact zones of each particle [22, 23]. However, none of the curves in 

figure 6 show saturation of the system and all curves have the linear 

trend without any apparent yield stress plateau in the whole range of the 

applied magnetic flux densities. This is probably due to the presence of 

nano-silica in all MR suspensions. These sub-sized particles can fill 

 

Figure 6. Dependence of the dynamic yield stress, ry, on the applied magnetic 
flux density, B, for 60 wt% (diamonds) and 80 wt% (triangles) concentrations 
of CI-PANI particles (solid symbols) or Cl particles (open symbols) in 
silicone oil. 

the free space in the tetragonal column structure of magnetic particles, 

which might help the formation of more robust chain agglomerates 

resistant to the higher external stresses, which leads to higher yield 

stresses even above the saturation of magnetic particles [24]. 

3.4. Viscoelastic properties 

As shown above, MR fluids exhibit Bingham plastic behavior with a 

yield stress and a system with such properties can be described as a 

viscoelastic material in the range of a small strain of oscillatory flow. In 

other words, oscillation experiments give information about the elastic 

(storage modulus, Gf) and viscous (loss modulus, G") behavior of MR 

fluids. Figure 7(a) depicts the dependence of G' and G”  on the strain 

amplitude (y) in oscillatory flow for 80 wt% CI-PANI suspension at 25 

°C. The chain structure development with increasing magnetic flux 

density can be observed from the storage modulus increase and the loss 

modulus decrease. This trend indicates the solid-like character of MR 

fluids under these conditions. In a very small-strain amplitude, the 

viscoelastic modulus, especially its elastic part, is independent of the 

applied strain; this range is called the linear viscoelastic region (LVR). 

In the LVR, the structure of the MR fluid is basically undisturbed. 

However, with increasing strain amplitude, the chain structure starts to 

break and the system shows nonlinearity and deviations from the 

viscoelastic behavior. At higher values of strain (which were not 

measured in our experiment) the elastic and viscous moduli intersect 

each other (G' = G"), the chain structure of the MR fluid breaks rapidly 

and the system starts to flow. 
For practical applications it is important to know the values of G' 

and G" in LVR and their strain frequency dependence. Figure 7(b) 

shows G' and G" as functions of the strain frequency for an 80 wt% CI-

PANI suspension at 25 °C in LVR under a very small strain (y = 

0.002%). The storage modulus of such an MR fluid slightly increases 

with increasing 



Figure 7. (a) Storage, G\ (solid) and loss, G\ (open) moduli as a function 
of the strain amplitude and (b) storage, G', (solid) and loss, G", (open) 
moduli as a function of the strain frequency in the various magnetic fields 
applied for an 80 wt% CT-PANT suspension in silicone oil at 25 °C. The 
symbols for magnetic flux densities (mT): 
• 0; A 96; ■ 200; and V 307. 

magnetic flux density. This is again evidence of the formation of higher 

magnetized structures. Moreover, the storage elastic modulus is 

constant over the wide range of driving frequencies. This trend 

confirms the fact that the thickness of the PANI coating layer used does 

not influence the magnetic properties of CI. 

3.5. Sedimentation test 

Finally, the effect of PANI coating on the sedimentation stability was 

investigated. MR fluids with the same weight fraction (60 wt%) but 

different dispersed particles were set in static conditions and the 

sedimentation ratios were measured until they approached asymptotic 

values. Figure 8 shows the sedimentation ratio as a function of time for 

bare CI and PANI- coated CI in suspensions with or without further 

stabilization by fumed silica. It is obvious that the CI-PANI suspension 

exhibits a higher sedimentation stability than that of bare the CI based 
one, in the same time period in a silica stabilized and 

Figure 8. Sedimentation ratio of MR fluids (60 wt%) based on bare Cl 
(□) or CI-PANI (■) particles with 0.5 wt% and bare Cl (A) or CI-PANI 
(A)  particles without silica added. 

also a non-stabilized MR suspension. Within the initial 10 hrs the 

uncoated particles settled much faster than the coated CL Therefore, the 

coating of magnetic particles with polymers, such as PANI, can 

improve the sedimentation stability due to the reduction in the overall 

density. It is worth noting that the sedimentation stability can be further 

improved using higher concentrations of thixotropic additives such as 

nanosilica (0.5 wt% in our case). However, in both cases the positive 

role of PANI coating is apparent. 

4. Conclusions 

Core-shell CI-PANI particles can be used as a dispersed phase in a 

novel MR fluid. Particles with the coating exhibit magnetic properties 

comparable to bare CL Based on visual observation, the PANI coating 

contributes to reduced sedimentation, and thus to improved suspension 

stability. In addition, it lowers the interaction between the carrier fluid 

and the particles resulting in a decrease of the fluidity of the system in 

the absence of a magnetic field. Therefore the relative change in the 

magnetorheological effect is significantly higher. The temperature 

plays also a very important role in MRF activity, and the efficiency 

increases at elevated temperatures. The viscoelastic properties of the 

fluids suggest that the CI-PANI suspension exhibits strong elastic 

behavior within the linear viscoelastic region due to the robust chain 

structure under an applied magnetic field. 
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